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Abstract

Vortical structures and instability mechanisms of the unsteady free surface wave-induced separation around
surface-piercing NACA0024 foil at a Froude number of 0.37 and a Reynolds number of 1.52� 106 are studied using an
unsteady Reynolds-averaged Navier…Stokes (URANS) code with a blendedk� e/k� o turbulence model and a free
surface tracking method. At the free surface, the separated ”ow reattaches to the foil surface resulting in a wall-bound
separation bubble. The mean and instantaneous ”ow topologies in the separation region are similar to the owl-fa
pattern. The initial shear-layer instability, the Karman-like instability, and the ”apping instability are identi“ed, and
their scaling and physical mechanisms are studied. Validation with experimental ”uid dynamics (EFD) and compariso
with complementary detached-eddy simulation (DES) indicate that URANS resolves part of the organized oscillation
due to the large-scale unsteady vortical structures and instabilities, thereby capturing the gross features of the unste
separation. The URANS solutions show an initial amplitude defect of 30% for the free surface oscillations where th
shear layer separates, and the defect progressively increases downstream as URANS rapidly dissipates the rolle
vortices.
r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Three-dimensional (3-D) ”ow separation is a vast area of study, which is not yet fully understood. The free surfac
adds to complications due to the waves and their interaction with boundary layers and vortices, free surface turbulenc
and air…water interfacial effects such as bubble entrainment and surface tension. In some cases, adverse piezom
pressure gradients due to steep waves induce and/or modify boundary layer separation. Gaining insight into the ”u
mechanics of these areas would be of both fundamental and practical interest, especially regarding applications in s
and ocean engineering.

Historically, the investigation of steady 3-D separation has been conducted through topological analysis, whic
provides a framework to classify the separation and deduce the volume ”ow “eld based on the nodes, saddles, a
the lines of separation and attachment on the surface streamlines. Although it is rarely used for analyzing unstea
ee front matterr 2008 Elsevier Ltd. All rights reserved.
uidstructs.2008.05.002
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3-D separation, topological analysis can still be performed at instantaneous time steps to elucidate the transpo
properties of the vortices in the separation region (Post et al., 2003).

Typically, unsteady separation is analyzed by studying the different instability mechanisms associated with t
organized oscillations due to large-scale vortical structures. For non-reattaching separated shear layers such as in ”
past circular cylinder and spheres, the main instabilities are the shear-layer instability and the Karman instability. Fo
reattaching separated shear layers such as in ”ow past the blunt leading edge of cylinders and backward-facing ste
the main instabilities are the shear-layer instability, the ••Karman-like•• shedding instability caused by amalgamation
the shear-layer vortices, and the ”apping instability.

The shear-layer instability initiates at a critical Reynolds number (Re) which depends on the spatial restriction
imposed by the mean recirculation length, i.e., at least one wavelength has to “t into the recirculation length and th
instability should have reached a signi“cant level of ampli“cation. For cylinder ”ows, a large disparity exists in
the literature for the precise value of the critical Re (� 350…3000) due to additional effects of free-stream turbulen
and the span-wise end conditions (Prasad and Williamson, 1997). The frequencyfS of the shear-layer instability, which
is similar to a Kelvin…Helmholtz instability, scales with the momentum thickness of the shear layer at separationy such
that the normalized Strouhal number is given by Sty ¼ fSy/US, whereUS is the shear-layer velocity at separation.Ripley
and Pauley (1993)demonstrated computationally that Sty is independent of Re in the range 113 928o Reo 364 747 for
separated laminar boundary layers over airfoils. However, they concluded that Sty varies with the nondimensional
pressure distribution and it therefore is geometry dependent.

The primary wake instability for non-reattaching separation like in the case of circular cylinders is the Karman
instability, which is caused by the interaction between the two opposite vortices. The Karman instability initiates a
Re� 49 and is evident even after the boundary layer transitions to turbulence at Re� 106 (Williamson, 1996). The
Karman shedding frequencyfK scales with the distance between the separated shear layers.Roshko (1955)found that
the normalized Strouhal number, Sth ¼ fKh/US, whereh is the half-wake thickness, has a universal value of 0.08, and
independent of both Re and the geometry.

For separation with wall-bounded separation bubbles like in the case of backward-facing steps (Lee and Sung, 2002)
and ”ow past the blunt leading edge of cylinders (Sigurdson, 1995), the shear-layer vortices amalgamate together t
form large-scale vortices that impinge on the wall just after the recirculation region, interact with the mirror image, and
shed. Although the vortex interaction is with its mirror image, unlike the staggered vortical arrangement of the Karman
vortices, Sigurdson (1995)showed that the scaling factors remain the same, the equivalenth in this case being the
normal distance of the separated shear layer from the wall. Henceforth, we shall use the term ••Karman-like•• shedd
for such type of symmetric vortex shedding for wall-bounded bubbles. For the Karman-like shedding, Sth mostly varies
between 0.07 and 0.09 for different geometries (Sigurdson, 1995).

Another signi“cant difference between the free separation bubbles and wall-bounded separation bubbles is t
existence of a stationary recirculation region for the latter case, which exhibits a periodic enlargement and shrinka
that has been termed as the ••”apping•• instability. This type of instability has a standing-wave-type nature (Kiya and
Sasaki, 1985). The general consensus is that the ”apping frequencyfF scales with the mean reattachment lengthXR, such
that the normalized Strouhal number is given by StR ¼ fFXR/UN , whereUN is the inlet velocity. For ”ow past the blunt
leading edge of cylinders (Kiya and Sasaki, 1985), StR ¼ 0.12 with XR ¼ 10 RC (RC is the cylinder radius). For ”ow
past backward-facing steps (Lee and Sung, 2002), StR ¼ 0.1 with XR ¼ 7.4 HS (HS is the step height). For ”ow past a
2-D square rib (Liu et al., 2008), StR ¼ 0.073 withXR ¼ 9.75HR (HR is the rib height); measurements of the instantaneou
reattachment point in response to the ”apping motion indicated an oscillation of 0.12XR about the meanXR.

The applicability of unsteady Reynolds-averaged Navier…Stokes (URANS) to simulate these instabilities has b
studied for a few basic geometries with mixed results. In the context of triple decomposition, URANS is assume
capable of resolving the unsteady mean ”ow, i.e., the mean and organized oscillations ”ow “eld, while the random
”uctuations are modeled as Reynolds stresses. Generally, URANS relies on the existence of a spectral gap between
time scales of the unsteady mean ”ow and the random ”uctuations, thus separating the resolved and modeled tim
scales. However, measurements of spectra for most bluff body ”ows indicate an absence of the spectral gap. Under s
circumstances where the resolved and modeled scales of motion overlap, the URANS eddy viscosity model, unl
large-eddy simulation (LES), fails to account for the scales of motions already resolved by the particular grid, and hen
does not reduce the eddy viscosity accordingly. This leads to an excessive arti“cial dissipation that over-damps
resolved scales of motion, causing an amplitude defect. In many cases, the smallest scales of organized motions, na
the shear-layer vortices are completely smeared out by the eddy viscosity.Constantinescu et al. (2003)did a
comparative study of numerical simulations of the sub-critical ”ow over a sphere using URANS with different
turbulence models, LES, and detached-eddy simulation (DES) at Re¼ 104. The URANS models predicted the value of
the Karman shedding frequency accurately, but with an amplitude defect, and completely failed to predict th
formation of shear-layer vortices. Nevertheless, even in the absence of a spectral gap, researchers have shown the a
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of URANS to predict the shear-layer vortices for other geometries.Khorammi et al. (2001)used URANS with the k� o
turbulence model for the acoustic analysis on the cove region of a cambered slat, and were able to predict the format
and the subsequent development of the free shear-layer instabilities that were responsible for the radiated no
Comparison with experimental measurements showed a good correspondence for the frequency spectrum, although
amplitude of the computed noise was about 30% smaller than the measured values.Paik et al. (2004)did a comparative
study using URANS with the Spalart…Allmaras turbulence model and DES for ”ow past a corner mounted rectangula
block and found that URANS yields unsteadiness within the shear layer. The location of the major peaks in the powe
spectrum distribution agreed well with the DES simulations, albeit with an amplitude defect greater than 50%. Thus
the ability of URANS to predict the shear-layer vortices is case dependent and relies on whether the length and tim
scales of the shear-layer vortices are large enough to overcome the excessive damping effects of the modeled
viscosity.

Few studies have investigated the effects of free surface on the instabilities associated with unsteady 3-D separa
and they have mainly focused on the Karman instability.Kawamura et al. (2002)performed LES simulations for ”ow
past surface-piercing circular cylinders. Simulations at Froude number (Fr)¼ 0.8 showed that at the deep regions
Karman shedding occurs, but near the free surface large-scale interactions between the two separated shear la
become less prominent due to the deformation of the free surface. The conjecture was that the inclination of t
separated shear layers due to the presence of waves hampers large-scale vortex shedding. The region in which the v
shedding is hampered extends to about one diameter from the mean water level.Lin and Li (2003) performed LES
simulations for ”ow past surface-piercing square cylinders and demonstrated that the presence of waves can red
both the vortex strength and frequency of the Karman vortex shedding induced by a uniform current due to the
nonlinear wave…current interaction.

Related, but unique is the separation induced solely by the free surface waves where the deep ”ow remains attach
Most of the work on this type of separation has focused on the mean ”ow separation pattern and topological analysis
Detailed analysis of the instability mechanisms governing the unsteadiness has not been performed until now. This ty
of separation was “rst identi“ed by Chow (1967)through an experimental ”uid dynamics (EFD) study using a surface-
piercing foil designed for insigni“cant separation for the deep condition. Chow showed that the separation occurred a
medium and high Fr, initiated just beyond the wave trough and extended to the foil trailing edge. Subsequently,Stern
et al. (1989) identi“ed the existence of this type of separation in their EFD study on the effects of waves on th
boundary layer of a surface-piercing ”at plate with a superposed Stokes wave generated by an attached upstrea
submerged horizontal hydrofoil. The separation occurred at high wave steepness, initiated beyond the wave trough, a
extended to the plate trailing edge. Using the same ”ow geometry,Stern et al. (1993)performed laminar Navier…Stokes
computations, which magni“ed the separation size due to the increased three-dimensionality and response to press
gradients, and thus facilitated the analysis of the ”ow topology based on critical point concepts. The laminar solution
showed an outward spiral node on the free surface with a saddle point on the plate. The global ”ow topology resemble
the owl-face pattern (Perry and Chong, 1987), but with one less node…saddle combination on the foil surface.Zhang
and Stern (1996)performed steady RANS simulations using a Baldwin…Lomax turbulence model with free surfac
tracking method on a surface-piercing NACA24 foil at Fr ¼ 0.37 and Re¼ 1.52� 106. This geometry allowed for a
more prominent separation at the turbulent regime compared to theStern et al. (1989, 1993)geometry, thereby
facilitating more detailed experiments and topological analysis of the turbulent solutions. The ”ow topology was simila
to Stern et al. (1993), showing global topological similarity to the owl-face pattern, but with extra critical points on the
foil surface. Complementary EFD wave-pro“le zp measurements at the intersection of the foil and the free surfac
showed an abrupt rise in the free surface wave-elevationz just after the bow wave trough (toe), at which point the ”ow
separates with vertical oscillations amounting to 15% of thez dynamic range in the separation region.Pogozelski et al.
(1997) is the only experimental work that analyzes the volume ”ow “eld for such ”ows. They conducted experiment
using a surface-piercing foil and constructed a sketch of the ”ow structure based on video images a
PIV measurements at one spatial orientation for Fr¼ 0.25 and Re¼ 6.8� 105. Sketches depict stream-wise counte
rotating vortex pairs occurring close to the free surface, which begin with shoulder wave breaking. Unfortunately
analysis was limited to Fr¼ 0.25 at which there was no ”ow reversal, whereas all the other related studies have focus
on separation with ”ow reversal at higher Fr. The authors point out that ”ow reversal is evident for Fr4 0.30 but
measurement was not made due to the number of entrained bubbles making velocity measurement dif“cult. Stea
RANS by Kandasamy (2001)with a second-order “nite difference method using a blendedk� o /k � eturbulence model
and improved free surface tracking on the same geometry and ”ow conditions asZhang and Stern (1996)showed better
comparison of the meanz and foil surface CP with complementary EFD by Metcalf (2001). The ”ow topology was
similar to the owl-face pattern. Subsequently,Metcalf et al. (2006)identi“ed certain dominant periodic modes from the
EFD frequency spectra ofz and the foil surfaceCP for Fr ¼ 0.37, but the ”ow physics behind these frequencies coul
not be explained since the complexity of the separation made detailed volume ”ow measurements dif“cult.
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Fig. 1. Surface-piercing NACA24 foil at Fr ¼ 0.37.

M. Kandasamy et al. / Journal of Fluids and Structures 25 (2009) 343–363346
The current study extends the previous steady RANS studies to URANS in order to explain the instability
mechanisms behind the dominant periodic modes identi“ed in the EFD measurements, as part of a complementa
URANS and DES study using both surface-tracking and level-set approaches. This paper focuses on the URANS wi
tracking approach, which was the “rst to be performed. The turbulence-generated disturbances in the free surface
not modeled, as they require a two-phase level-set approach with specialized boundary conditions (Brocchini, 2002).
The free surface eruptions inFig. 1 indicate that the broken free surface is a result of the strong turbulence generate
underneath the free surface meeting the free surface (Brocchini and Peregrine, 2001). Triple decomposition of the
unsteady free surface elevation spectra byMetcalf et al. (2006)shows that the average root mean square (r.m.s.) of th
visually prominent random ”uctuations is an order of magnitude smaller than that of the underlying organized
oscillations in the separation region. The turbulence-induced free surface eruptions would affect the evolution
turbulent eddies of similar and lower time scales in the inertial and dissipation ranges of the energy spectrum. Howev
its effect on the organized oscillations occurring in the energy containing range, which is the focus of the current stud
is small. The current approach proved capable in capturing the instabilities driving the organized oscillations, but with
signi“cant amplitude defect. Solutions obtained using URANS with level-set approach failed to capture the instabilities
due to the additional dissipation from the reinitialization of the level-set function, which compounds with the already
dissipative nature of URANS. The complementary DES study (Xing et al., 2007) focused primarily on the level-set
approach because of the dif“culty in achieving a monotonically converged solution using the surface-trackin
approach, which is attributed to the limiter on the maximum wave slope required by the surface-tracking method. Th
DES study supports “ndings from the current URANS study, and highlights the relative advantages and disadvantage
of the different computational methods. The dif“culty in isolating and visualizing the vortical structures from the many
small-scale eddies in DES established that need for URANS, which damps the random ”uctuations and resolves on
the large-scale organized oscillations albeit with de“ciencies in their amplitudes. The main similarities and differences
the current URANS solutions with respect to the DES solutions will be discussed in the concluding remarks.
c

t
as
2. Computational method

The general-purpose parallel URANS solver, CFDShip-Iowa, has been developed at the Iowa Institute of Hydrauli
Research over the past 15 years. Documentation of the basic method, URANS with the blendedk� e/k� o turbulence
model and the DES turbulence model using the free surface-tracking method (version 3.03), is provided inWilson et al.
(2006). Version 3.03 has been extended to version 4.0 (Carrica et al., 2006) with the use of the single-phase level-se
method. The current paper uses version 3.03 of the code with the URANS and surface-tracking method, where
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Xing et al. (2007) focuses on the DES with level-set using version 4. The following provides a brief description of th
URANS and surface-tracking method used.
2.1. Governing equations

For Cartesian coordinates, the continuity equation and the momentum equation in the nondimensional tensor form
are

qU i

qxi
¼ 0, (1)

qU i

qt
þ U j

qU i

qxj
¼ �

qp̂
qxj

þ
1

Re
q2U i

qxjqxj
�

q
qxj

uiuj . (2)

All equations are nondimensionalized using the reference velocityU0 (towing speed of the foil¼ 1.27 m/s),
the foil length L ¼ 1.2 m, and the water densityr ¼ 998 kg/m3 (average water temperature 191C). Ui ¼ (U, V, W)
are the dimensionless Reynolds-averaged velocity components,xi ¼ (x, y, z) are the coordinate directions,t is the
dimensionless ”ow time, p̂ ¼ pabs=r U 2

0 þ z=Fr2 is the piezometric pressure coef“cient, Re¼ U 0L=n is the Reynolds
number, n is the molecular viscosity¼ 1.00263� 10� 6 m2/s (average water temperature 191C), Fr ¼ U 0=

������
gL

p
is the

Froude number, and uiuj are the Reynolds stresses which are two-point correlation of the random ”uctuationsui.
s

2.2. Turbulence

The Reynolds stresses are directly related to the mean rate-of-strain through an isotropic eddy viscositynt as
expressed in

� uiuj ¼ nt
qU i

qxj
þ

qU j

qxi

� �
�

2
3

dij k, (3)

wheredij is the Kronecker delta andk ¼ 1
2uii is the turbulent kinetic energy. Substituting (3) for the Reynolds-stress term

in (2) gives the modi“ed momentum equation:

qU i

qt
þ U j

qU i

qxj
¼ �

qP
qxj

þ
1

Reff

q2U i

qxj qxj
�

qnt

qxj

qU i

qxj
þ

qU j

qxi

� �
; (4)

P ¼ p̂ þ 2
3k and 1=Reff ¼ 1=Re þ nt, and nt are computed using a blendedk� e/k� o model (Menter, 1994). A blending

function is designed to be unity in the viscous sublayer and logarithmic regions of boundary layers, where thek� o
model is set active, and gradually switches to zero in the wake region, where thek� e model is set active, to take
advantage of the strengths of both the models. Thek� o model does not require near-wall damping functions and use
simple Dirichlet boundary conditions while the k� e model does not exhibit sensitivity to the level of free-stream
turbulence, as does thek� o model.
e
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2.3. Free surface

The computational domain covers the water region only and the grid is dynamically conformed to the free surfac
location. The kinematic free surface boundary condition given by Eq. (5) updates the grid every time step to computez
(expressed dimensionless henceforth) and requires that the free surface is a material surface

qz
qt

þ U
qz
qx

þ V
qz
qy

� W ¼ 0. (5)

At the intersection of the free surface and no-slip surface (i.e., the contact line), Eq. (5) becomes singular when
contact line is in motion but the ”uid velocity is zero due to the viscous no-slip boundary condition. To overcome the
problem, a small near-wall region is ••blanked out•• when solving Eq. (5) and the solution in this region is linear
extrapolated from the interior of the domain. The dynamic free surface boundary condition requires that the stresse
are continuous at the free surface, and provides the boundary conditions for velocity and pressure, which will b
provided in forthcoming sections.
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2.4. Numerical method

All the solutions presented in this paper use the third-order “nite difference scheme for the spatial discretization o
the momentum equation, as the second-order scheme dissipates the shear-layer vortices too rapidly, and fails to pre
their subsequent amalgamation. A second-order “nite difference scheme is used for the temporal discretization. T
pressure implicit split operator algorithm used uses a predictor-corrector approach to advance the momentum equatio
while enforcing the continuity equation. Fourth-order arti“cial dissipation implicitly added by taking a linear
combination of full- and half-cell operators (Sotiropoulos and Abdallah, 1992) overcomes the pressure velocity
decoupling problem caused by the collocated grid. The overall method is fully implicit, and a line-ADI (alternating
direction implicit) scheme with a pentadiagonal solver and under-relaxation is used to solve the algebraic equations.
message-passing interface-based domain decomposition approach is used, where each decomposed block is mapp
one processor of a parallel IBM SP 3 supercomputer.

2.5. Geometry and �ow conditions

Fig. 1 shows a photo of the foil at Fr ¼ 0.37 and Re¼ 1.52� 106 in the tow tank. The tow tank dimensions are
w/L ¼ 2.5 and h/df ¼ 2 (wherew is the width of tow tank, h the depth of tow tank, and df the foil draft). To reduce
computational cost, instead of modeling the exact tow tank conditions, the foil is modeled with an extended foil draf
(2df) where the foil reaches the bottom boundary with no ”ow beneath the foil, and without the towing tank walls
(Fig. 2). The extended foil draft prevents the restricted water effects due to the bottom from affecting the free surfa
solutions. In the tow tank, there is ”ow beneath the foil along its ”at bottom, which forms a separation bubble near the
leading edge affecting the pressure distribution near the foil bottom and the local ”ow. Previous CFD and EFD
established relatively small dependence of the free surface separation pattern to both the wall and the foil botto
(Kandasamy, 2001).

Simulations with quantitative veri“cation and validation were conducted for all three experimental conditions
covering minimal, reattaching, and non-reattaching separation: Fr¼ 0.19, 0.37, and 0.55 with respective
Re ¼ 0.78� 106, 1.52� 106, and 2.26� 106, as provided by Kandasamy (2005). Herein, only the Fr ¼ 0.37 results
are presented since this is the condition at which the most extensive EFD validation data are available, and at which t
DES was conducted. Laminar simulations (both 2-D and Fr¼ 0.37, at Re¼ 1500 and 2500) were also conducted t
compare Sty and Sth with that of the turbulent simulations. The laminar simulations also enabled comparison of Sty and
Sth at the free surface with respective values for the deep-”ow separation, since the deep ”ow does not separate for
turbulent simulations.
Far-field X

Z

Y

R

Le No-slip

Free surface

Exit

Fig. 2. Computational domain, boundary conditions, and grid topology.
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2.6. Computational domain and grids

The foil, with a dimensionless length of 1, extends fromx ¼ 0 to 1. The body-“tted C-grid (Fig. 2) was decomposed
into 8 separate blocks for parallel computation. The grid has a far-“eld boundary that is a semicircle of radiusR ¼ 10
encircling the foil with the trailing edge (x ¼ 1) as its focal point. A rectangular grid of lengthLe ¼ 8 and width 2R
extends from the trailing edge to the exit. The domain size was “nalized based on results from domain convergen
studies. Three domains withR ¼ 5, 7, and 10 with respectiveLe ¼ 5.5, 6.6, and 8 were used in the study. Th
nondimensional mean coef“cient of total resistanceCTX converged with a convergence ratio of 0.6, with a 0.15%
difference between the largest two grids. The wall coordinatey+ ¼ Uty/n, whereUt is the friction velocity, was kept
less than 1 for all grids. The grid is clustered near the free surface too, with an initial grid spacing less than 10� 3 for all
the grids. The grids were generated using the commercial code GRIDGEN.

Note that the current simulations use a full domain, whereasXing et al. (2007)use a half-domain. The full domain
was created in order to consider the very low-frequency asymmetric meandering wake in the far “eld. However, t
analysis of the far-“eld wake proved dif“cult since the running mean of the side forces did not converge to zero eve
after 80 ”ow times on the “ne grid. It is reasonable to expect that a much larger domain size and a much longer runnin
time will be required to resolve this meandering wake, which is beyond the affordable computer resources and scope
the current study.

2.7. Boundary conditions

The boundary conditions speci“ed on each boundary are as follows. On the foil surface, a no-slip condition is use
i.e., (U, V, W) ¼ 0 and the pressure gradient is assumed to be zero, i.e.,qP/qn ¼ 0 (wheren is normal to the boundary).
On the exit plane, axial diffusion and pressure gradient are assumed to be zero, i.e.,q2(U, V, W)/qx2 ¼ 0 andqP/qx ¼ 0.
On the bottom deep boundary, an impenetrable slip condition is used, i.e.,q(U, V, P)/qz ¼ 0 and W ¼ 0. On the outer
boundary, a far-“eld boundary condition is used, i.e., U ¼ Uo, V ¼ 0, W ¼ 0, and P ¼ 0. On the free surface, the
dynamic free surface boundary condition dictates thatq(U, V, W)/qz ¼ 0 and p̂ ¼ z=Fr2. The conditions on the
turbulent quantities are as follows: on the foil surface,k ¼ 0, o ¼ 60=ðRe � 0:075� Dy2Þ, nt ¼ 0; on the exit plane, on
the bottom deep boundary, on the outer boundary, and on the free surfaceqk/qn ¼ 0, qo /qn ¼ 0, and qnt=qn ¼ 0.

2.8. Analysis methods

The fast Fourier transform (FFT) of z and the foil surface CP time histories enabled the identi“cation of the
frequencies corresponding to the different instability mechanisms, and helped isolate regions where the differ
instabilities dominate in the ”ow “eld. The time evolution of the vortices was studied at the locations corresponding to
the different frequencies identi“ed, and the instability mechanisms were related to the evolution of the extracte
vortices. The vortices were extracted using two different vortex extraction techniques, theQ criterion (Hunt et al., 1988)
and velocity vector eigenmodes vortex detection (Sujudi and Haimes, 1995). The “rst method is based on the balance
between the rotation rate and the strain rate, and positiveQ iso-surfaces denote regions where the strength of rotatio
overcomes the strain thus making those surfaces eligible as vortex envelopes. The main disadvantage of this metho
the dif“culty in distinguishing the individual vortices. The second method is based on the extraction of vortex core lines
This method distinguishes the individual vortices, but sometimes has dif“culty in producing contiguous vorte
core lines. The individual limitations of these two methods were overcome by using the two together. The accuracy
the detected vortices was ascertained by seeding streamlines near vortex cores and visualizing the swirling patterns
are generally associated with vortices. The topology of separation at different instantaneous time steps was a
analyzed to investigate the behavior of the critical points during events such as vortex merger and breakdown.
h

3. Veri“cation and validation

Veri“cation and validation used Stern et al. (2001)methodology and procedures with updated correction factors by
Wilson et al. (2004). Veri“cation is a process for assessing the simulation numerical uncertaintyUSN given by
U 2

SN ¼ U 2
I þ U 2

T þ U 2
G, where UI is the iterative uncertainty, UT is the time-step uncertainty, andUG is the grid

uncertainty. Validation is the process for assessing the simulation modeling uncertainty by comparing wit
experimental data D. The comparison error E is given by the difference betweenD and the simulation S. To
determine if the solutions are validated,E is compared to the validation uncertaintyUV, given by U 2

V ¼ U 2
D þ U 2

SN,
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Table 1
Grids used for veri“cation

Grids 1 2 3 4 5(Non-systematic
“nal solution grid)

Size 70 680 114 048 187 824 531 006 1 004 400
y+ 0.36 0.3 0.25 0.18 0.9

Table 2
Grid studies for CTX

Case Grids rG pG USN (%)

1 1, 2, 3 1.189 1.94 15
2 1, 3, 4 1.414 2.9 4
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whereUD is the uncertainty in the data. If |E|o UV, the combination of all the errors in D and S is smaller thanUV and
validation is achieved at theUV level.Metcalf et al. (2006)provide data for the meanz and the mean foil surfaceCP. In
addition, the time history of z and the foil surfaceCP are available over 10 ”ow times after the initial transients have
subsided. This enables quantitative comparisons of the r.m.s. and the FFT for bothz and the foil surfaceCP.

Tables 1 and 2summarize the grids used for the grid studies and the different studies conducted, respectively. T
separate grid studies were conducted: Case 1 using re“nement ratioðrGÞ ¼

���
24

p
, and Case 2 usingrG ¼

���
2

p
. The

veri“cation of point variables (z and CP) poses a problem at locations where the solution changes approach zero su
that convergence ratio (RG ¼ e32/e21, wheree32 and e21 are the solution changes between the “ne grid and medium grid
and the solution changes between medium grid and coarse grid, respectively) approaches zero. To overcome
problem, separate L2 norms ofe21 and e32 over zp were used to de“ne ratios forRG. The sameRG value was used in
calculating point-wise USN for zp, z, and CP. UV and E were calculated and the point variables were validated usin
grid-4. Grid densities were determined considering initial understanding of ”ow physics and computer resources, pri
to detailed analysis of results. A “ner non-systematic grid (grid-5) was generated with an improved grid distribution to
better capture the features identi“ed from the grid-4 solutions. The solutions from grid-5 lie within the validation
uncertainty intervals of the grid-4 solutions for both CTX and the point variables (zp, z, and CP), and were used for the
analysis of the unsteady separation pattern.

3.1. Iterative and statistical convergence

Parametric studies on sub-iterations (free surface/momentum coupling) for each time step ensured iterative solut
convergence at each time step. Results showed difference of 5% ando 1% for CTX by changing free surface/momentum
coupling iterations from 3 to 4, and 4 to 5, respectively. Simulations then used 4 free surface/momentum coupli
iterations. Statistical convergence of the running average on the time histories ofCTX established statistically stationary
unsteady solutions. The criterion for statistical convergence is that the magnitude of ”uctuations of the running mea
drop to less than 1% of the mean value., i.e.,UIo 1% mean CTX.

3.2. Time-step studies

Time-step studies were conducted on grid-3 (Case 1 “ne grid) forCTX with a re“nement ratio of
���
2

p
(Dt ¼ 0.00707,

0.01, and 0.014). The results show oscillatory convergence forCTX with the time-step uncertainty (UT ¼ 0.3% of mean
CTX) similar in magnitude asUI, both being an order of magnitude smaller thanUG for Case 1.U T � U I 5 U G, so that
simulation numerical uncertainty USN ¼ O(UG

2+ UT
2+ UI

2)� UG.

3.3. Veri�cation of CTX

Table 2 tabulates results from grid studies for meanCTX. For Case 1, the order of accuracypG ( ¼ 1.94) is lower than
the theoretical order of accuracypGth ( ¼ 3) with USN ¼ 15%, indicating that the asymptotic range is not reached. For
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Fig. 3. CTX: (a) time history of the solutions on all four grids; (b) FFT of the solution grid time history.
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Fig. 4. Validation of mean z: (a) zp on all grids and EFD data; (b) z on solution grid and EFD data.
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Case 2,pG ( ¼ 2.9) is close topGth, and the uncertainties are much lower compared to Case 1 withUSN ¼ 4%. Fig. 3(a)
shows the grid convergence of theCTX running mean for Case 2 grid study, along with theCTX for grid-5 (solution
grid). The meanCTX for the solution grid is 0.013, which lies within the uncertainly interval of grid-4. No EFD data are
available for the validation of CTX. Fig. 3(b) shows the spectra of the general Strouhal number given by St¼ fL /U0,
obtained by performing an FFT of the solution grid CTX time history. The FFT shows the highest peaks around
St ¼ 0.3, 0.7, and 2, corresponding to the ••”apping••, ••Karman-like••, and the shear-layer instabilities, respective
which will be discussed in forthcoming sections. The multiple primary instability modes interact non-linearly to produce
sum and difference frequency modes, which in turn interact with the primary instability modes producing more sum an
difference frequency modes (Miksad et al., 1982). This process continues, causing spectral broadening and th
occurrence of the side-banded structures adjacent to the primary instability modes as seen inFig. 3(b). The second and
third harmonics of the shear-layer instability frequency are also distinctly evident inFig. 3(b).
.

3.4. Veri�cation, validation, and discussion of point variables

Fig. 4(a) showszp for the three grids used in the Case 2 grid study, along with the solution grid and EFD pro“les
Monotonic convergence is achieved, but withpG ( ¼ 1.8) less thanpGth, which is consistent with expectations for
solutions on stretched, curvilinear grids. EFD depicts the toe atx ¼ 0.4 with an abrupt recovery (x ¼ 0.4…0.5), followed
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Fig. 5. Validation of unsteady z: (a) r.m.s., separation bubble illustrated in the CFD contour; (b) dominant St; the square location
marker on the CFD plot indicates location at which point-wise comparisons will be presented for the ”apping instability (Fig. 10).
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by a more gradual recovery with oscillations further downstream (xX 0.5). URANS predicts the location of the toe
accurately, but fails to predict the subsequent sharp rise inzp. This causes an under-prediction ofzp at 0.4o xo 0.6 and
an over-prediction of zp at x4 0.6. Fig. 4(b) comparesz between CFD and EFD over the entire free surface domain
EFD shows that the Kelvin wave is displaced away from the foil surface by the separation region. The Kelvin wave
not displaced far enough in CFD since URANS predicts a smaller separation region. The wave amplitudes are al
higher in CFD. |E| exceedsUV by 15% at the toe and by 10% along the Kelvin wave crest.

Fig. 5(a) compares the r.m.s. ofz between CFD and EFD. The superposed free surface mean ”ow streamline
illustrate the separation bubble at the free surface in the CFD contour plot. EFD shows that the r.m.s. peaks near th
toe with signi“cant values of r.m.s. in a semi-elliptical region near the shoulder, which roughly corresponds to the shap
of the separation bubble illustrated in the CFD. The CFD r.m.s. values compare better when the shear layer “rs
separates with about 30% amplitude defect [(CFD� EFD)/EFD � 100%], but the defect increases downstream a
URANS rapidly dissipates the rolled up vortices. Fig. 5(b) shows contours of St corresponding to the dominant
frequency (most energy containing frequency) on the free surface. The contours have a cut-off St of 0.25 based on
non-dimensional time window (t ¼ 10) used for the FFT. The low r.m.s. regions have been blanked out to eliminat
noise. EFD data indicate that the regions of most signi“cant r.m.s. are dominated by shear-layer and Karman-lik
























