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The present work focuses on the application of simulation-based design for the resistance optimization
of waterjet propelled Delft catamaran, using integrated computational and experimental fluid dynamics.
A variable physics/variable fidelity approach was implemented wherein the objective function was evalu-
ated using both low fidelity potential flow solvers with a simplified CFD waterjet model and high fidelity
RANS solvers with discretized duct flow calculations. Both solvers were verified and validated with data
for the original hull. The particle swarm optimizer was used for single speed optimization at Fr = 0.5,
and genetic algorithms were used for multi speed optimization at Fr = 0.3, 0.5 and 0.7. The variable
physics/variable fidelity approach was compared with high fidelity approach for the bare-hull shape opti-
mization and it showed an overall CPU time reduction of 54% and converged to the same optimal design
at Fr = 0.5. The multi-speed optimization showed design improvement at Fr = 0.5 and 0.7, but not
at Fr = 0.3 since the design variables were obtained based on sensitivity analysis at Fr = 0.5. High
fidelity simulation results for the optimized barehull geometry indicated 4% reduction in resistance and
the optimized waterjet equipped geometry indicated 11% reduction in effective pump power required at
self-propulsion. Verification was performed for the optimized hull form and its reduction in powering will
be validated in forthcoming experimental campaign.
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1. Introduction

Waterjet (WJ) propulsion features shallow draft design, smooth engine load, less
vibration, lower water borne noise, no appendage drag, better efficiency at high
speeds and good maneuverability. Pre-designed waterjets are readily available for
any type of vessel based on the engine power, resistance curves, and the design
speed of the ship. However, the performance of the WJ systems with respect to in-
let efficiency, velocity distribution at the impeller plane, and cavitation inception at
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cutwater, rely on the inlet velocity ratio (IVR), which depends on the specific hull
shape in addition to the speed of operation. Optimization of the pre-designed water-
jets with regard to the specific hull forms would considerably improve the powering
performance.

Recent developments in CFD and high performance computing have significantly
advanced simulation-based design (SBD) optimization of ship hull forms and greatly
reduced the cost incurred by traditional build and test approaches. Campana et al.
[5] provides an overview of all the relevant aspects involved in the development of
an up-to-date SBD framework for ship design: optimization algorithms to explore
the design space in search for the optimum design, automatic mesh and geometry
modifiers and analysis tools for evaluating the objective function and drive the opti-
mization algorithm.

The analysis tools used for SBD optimization vary in levels of approximation,
progressing from linear 2D slender body theory, to non-linear 3D panel methods, to
detailed RANS calculations including all ship appendages. Stern et al. [26] gives a
detailed overview of the different fidelity codes used at different stages of the SBD
process. Combinations of different methods, namely “zonal” or “domain decompo-
sition” approaches have also been developed. Janson and Larson [14] divided the
domain into three zones for the simulation-based optimization of a series 60 hull.
The first zone covers the entire hull and a part of its surrounding free-surface and
uses a free-surface Rankine-source type potential-flow method. The second zone is
a thin layer at the hull surface and uses a momentum integral type boundary layer
method. The third zone includes the aft part of the hull and uses RANS. The zones are
computed in sequence and boundary conditions are generated for succeeding zones.
This approach reduces the computational time considerable compared to a full RANS
solver. However, since the viscous non-linear effects on the waves were neglected,
experiments carried out for the original and the optimized hull did not validate the
resistance improvements obtained in the computations. The computations predicted
the right trend, but underpredicted the wave resistance magnitude. Consequently, the
authors recommend the use of a Navier–Stokes solver with free-surface calculations
for future work. Similar observation was made by Kandasamy et al. [17] where the
early stage potential flow optimization predicted the correct trend but underpredicted
the wave resistance magnitude for a foil-assisted semi-planning catamaran.

Numerical optimization algorithms for automatic optimal design are independent
of the flow-solver complexity, which is however an issue (and has to be properly
treated via variable fidelity and/or metamodels approaches, see Campana et al. [5])
when the computational cost is large. Gradient based optimization methods are clas-
sified as local optimization schemes since they require the calculation of the gradient
of the objective function and hence may get stuck in a local minimum. Meta-heuristic
optimization methods such as genetic algorithms and particle swarm optimizers are
classified as global optimization algorithms since they are derivative-free and less
prone to getting stuck in a local minimum. However, they are much more expensive
in terms of number of objective function evaluations needed for the achievement of
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the convergence of the algorithm, and they are typically very slow to converge at the
precise optimal value. Finally, the way in which the automatic geometrical and vol-
ume (or surface) grid changes are handled is the third important block of any SBD
tool. The computational grid adopted in the analysis must be deformed, in back-
ground, each time there is a new perturbed design to be evaluated, trying to preserve
at the same time the quality of the new mesh. In conjunction with RANS solvers,
regridding issues may become extremely relevant to the performance and the final
result of the optimization.

The main objective of the current hydrodynamic optimization was to implement
a multi-pronged parallel optimization for powering optimization of a WJ-propelled
catamaran at Fr = 0.5, using different features of the SBD toolbox. A complemen-
tary multi-speed optimization study was also carried out for three different speeds,
Fr = 0.3, 0.5 and 0.7. The toolbox used for the optimization is a product of the long-
term ongoing collaboration between IIHR, INSEAN and NMRI research groups. The
toolbox consists of the high fidelity (HF) URANS solver CFDShip [6], and the low fi-
delity (LF) linearized potential flow solver WARP [2], two evolutionary optimization
algorithms, namely a multi-objective genetic algorithms – MOGA [29] and a particle
swarm optimization (PSO) method [5]. It also contains different geometry modifi-
cation tools and meta-modeling techniques, namely a free form deformation (FFD)
approach [4] and different morphing techniques. Previous versions of the toolbox
have been successfully used for progressively complex designs, namely, mono-hull
surface combatant [4], multi-hull high speed sea lifts [29], SWATH displacement
ships [28], foil-assisted semi-planing catamaran ferries [17] and uncoupled barehull
and WJ inlet optimization of JHSS mono-hull [18]. The current study extends the
SBD toolbox to the water-jet propelled Delft catamaran (DC) that has pronounced
WJ-hull interaction caused by the hull contour at inlet, unlike JHSS that has a flat
intake. The absence of gooseneck and multiple adjacent waterjets makes it more cost-
effective for forthcoming build and test validation of the optimized hull form. The
multi-hull geometry provides additional opportunities to explore asymmetric effects
of the demi-hulls on wave interference and inlet air-entrainment. Sufficient model
testing data of the original hull is available for code validation and data has already
been used as a benchmark for many hydrodynamic performance and validation stud-
ies; e.g., effects of separation distances [12], sea-keeping [7], manoeuvring [19], and
also for the development of the integral force/moment CFD WJ model [16].

Since viscous effects involving boundary layer ingestion play a significant part in
the WJ-hull interaction efficiency and the WJ inlet ducting efficiency, potential flow
methods cannot be used for the duct inlet optimization. Hence, a variable physics ap-
proach is used for initial hull-form optimization with the simplified CFD WJ model
to replicate the effects of the WJ without simulating the duct flow. The best perform-
ing hull is then attached with the discretized WJ duct for detailed inlet optimization
using the high fidelity RANS solver with an actuator disk model to replicate the ef-
fects of the impeller.
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2. SBD methodology

The SBD methodology comprises of three main parts: the optimizer, the geometry
modification methods and the analysis tools (in the case of fluid dynamic optimiza-
tion the latter are flow solvers, Fig. 1). The analysis tools send the evaluated objective
functions for a certain set of design variables to an optimizer, which searches for their
minimum value under the general non-linear programming mathematical framework
and continually updates the design variables. Geometry modeling methods provides
the link between the two by deforming the hull shape based on the updated design
variables.

2.1. Optimizers

The SBD toolkit features two derivative-free, global optimization algorithms: PSO
is a single/multi-objective global optimization algorithm and MOGA that is primar-
ily a multi-objective optimization algorithm, but can also be used for single objective
problems by setting the second objective function equal to the first one. MOGA is
a stochastic algorithm, since the final results depends on the random variables in-
volved in the initial formulation, whereas a new deterministic version of the original
stochastic.

2.2. Geometry modification methods

Three different options are available for parametric design: B-splines, FFD tech-
nique and morphing. With B-splines, the hull form deformation is controlled by the
position, direction and magnitude of the knot vectors that form the basis of the de-
sign variables. With FFD, the hull form is embedded into a parallelepiped, split by
a number of coordinate planes. Crossings between the planes are the control points
of the FFD, and the movement of the control-points results in the deformation of the
volume, and the embedded hull. With morphing [24], the grid points are obtained
as the weighted sum of the corresponding corners of the base grids, and weights are
represented by the design variables of the optimization problem.

Fig. 1. SBD toolbox and methodology.
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2.3. Solver methods

Two options are available for the choice of flow solver CFDShip-Iowa developed
at IIHR is used as HF analysis tool, and the potential flow solver WARP, developed
at INSEAN is adopted as LF code.

2.3.1. CFDShip-IOWA
The URANS solver uses a single-phase level set method to predict the free sur-

face. A second order upwind scheme is used to discretize the convective terms of
momentum equations and a pressure-implicit split-operator algorithm is used to en-
force mass conservation on the collocated grids. The pressure Poisson equation is
solved using the PETSc toolkit. All the other systems are solved using an alternating
direction implicit method. For a high performance parallel computing, a MPI-based
domain decomposition approach is used, where each decomposed block is mapped to
one processor. A simplified body force model is used for WJ simulation to prescribe
axisymmetric body force within the duct.

2.3.2. WARP
The WARP potential code is a classical boundary-element method solver. To solve

numerically the set of integral equations arising from the Laplace equation arising
from the potential flow description of the problem, the wetted hull surface and a
region of the free surface are discretized into plane elements of quadrilateral shape.
The free surface boundary conditions are linearized around the calm water level.
Derivatives of the velocity potential are obtained analytically. The viscous terms are
not directly considered during the solution, and an accurate estimate of the wave
resistance is obtained, by pressure integration or by wave cut analysis. The frictional
contribution is obtained by means of a locally adapted ITTC formula, where a local
Reynolds number is used for each panel, based on the local velocity. The code allows
for free sinkage and trim: the hull position is obtained by the equilibrium of the forces
on the hull and the WJ induced forces and moments prescribed by the simplified CFD
WJ model.

2.3.3. Water-jet models
The WJ duct flow can either be simulated through a discretized duct with an em-

bedded actuator disk model to replace the pump system, or by using the simplified
CFD WJ model to replace the whole duct control volume.

Simulations with embedded actuator disk model for WJ propelled JHSS have been
validated recently by Delaney et al. [9] without free-surface calculations, and Takai
et al. [31] who included free-surface calculations. Delaney et al. [9] indicated that
the exclusion of the shaft in the actuator model had negligible influence on the per-
formance analysis of the WJ system and they showed less than 1% error for self-
propulsion flow rate, whereas Takai et al. [31] showed a 6% error which is attributed
to overset grid interpolation errors within the duct.

The simplified CFD WJ model is used here to incorporate the effects of the WJ
induced vertical forces and pitching moments on the sinkage and trim of the hull,
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Fig. 2. CFD Waterjet model control volume.

without requiring detailed simulations for the WJ duct flow during the bare-hull op-
timization. The model uses the control volume shown in Fig. 2, which is selected
with consideration to implementation simplicity in CFD using the same bare-hull
grid by representing the WJ system by vertical reaction forces and pitching reaction
moment, and by representing the WJ/hull interaction using a vertical stern force.
The detailed duct flow calculations from the original hull provide the WJ induced
vertical forces and pitching moments to be used during the hull shape optimization.
Details of the model are provided in Kandasamy et al. [16] who validated its usage
for WJ propelled DTMB-5594. Detailed waterjet flow simulation results from JHSS
and DC were also used to investigate feasibility of deriving correlations based on
the WJ geometry and IVR at working point. Ultimately, the model will be of most
use if these generalized correlations can be obtained, which would provide the WJ
induced forces and moments without prior experiments and/or detailed simulations
of the duct flow.

2.4. Variable fidelity/variable physics approach

Numerical optimization in the naval field is shifting toward the use of High Fi-
delity (HF) CFD solvers, increasing the level of the physical content of the applied
mathematical models adopted to guide the optimizer. This is done at the expense
of computational power required for the analysis of the different designs, required
during the course of the optimization.

One possible strategy to reduce the computational effort is to reduce the calls to
the HF solver using approximation and/or interpolation models. A limited number of
expensive HF simulations that sample the design space by some proper technique is
used to obtain an approximation of the objective function (a meta-model, e.g. [23]).
The optimization is then carried out using the meta-model whereas the optimum
is checked using the HF code. The accuracy of the meta-model is then increased
with every new point and the process is iterated until some kind of convergence is
obtained.

The main criticism formulated for the use of meta-models is based on the difficul-
ties in deriving a reliable approximation of the objective function when the number of
variables is not small. An attractive alternative is based on the idea of exploiting two
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or more physical models of different complexity (fidelity) for computing the same
objective function. A Low Fidelity (LF) solver, fast but relatively simple, is adopted
in conjunction with a High Fidelity (HF) solver, more reliable but time consuming.
This simple – and old idea in engineering approaches to solve complex problems –
is then “reinforced” with a solid mathematical background for the determination of
the correlation law between HF and LF that gives an answer to the obvious ques-
tion of when to switch from HF to LF and vice-versa. This represent the core of the
VF/VP approach. The problem is solved using the fast LF tool, and the trust region
approach (the mathematical theory) gives the rules for the systematic switch from
LF to HF. Large CPU time savings (of the order of 50% and more, depending of the
application) are obtained while the consistency between the two formulations (with
and without VF/VP) is guaranteed.

The first proposal of the formulation of the VF/VP framework was presented for
gradient based approaches and local optimization problems [1]. The essence of the
idea stems from the basic Taylor series: any continuous and differentiable function
of N variables can be locally expanded in Taylor series, so that in the neighborhood
of the computational point x0 holds the relationship:

f (x) = f
(
x0)+

N∑
i=1

∂f

∂xi

(
xi − x0

i

)
+O2. (1)

Now, if we have two different models (LF and HF) to compute the same objective
function, we can define a gap function as the difference of the two values at any x
point of the N-design space:

β(x) = fHF(x) − fLF(x). (2)

So that:

fHF(x) = β(x) + fLF(x). (3)

From Eq. (3) follows that if the value of β(x) is known over all the space, the HF
would have been not needed anymore. The value of the LF function plus the gap
function β would have then given the correct HF value. The problem is therefore
shifted on the computation/evaluation of β(x), in which the Taylor series intervenes.
If we apply a Taylor expansion of β around the current design point x0, and we stop
at the first order as in previous equation, we obtain an approximation of β, say βT .
Obviously, βT is exact only at the linearization point x0, while some discrepan-
cies arise once we move away from x0. We call trust region the portion of space in
which the βT model is considered trustable, i.e. sufficiently accurate. This region is
assumed spherical and centered in the linearization point x0 and with trust-region
radius ρ that can be adjusted dynamically.
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The missing quantities to compute βT are the value of β(x0) and the derivatives of
β(x) with respect to the design variables. If we are using a derivative-based optimiza-
tion algorithm, these quantities are needed in any case, and we can compute them at
the first step of the optimization algorithm. Since then, we are using the LF values
plus correction, and we check the correctness of the approximation βT by compar-
ing the true HF value and the approximated HFT = βT + LF. In a derivative-based
algorithm, two different phases are identified: firstly, the gradient of the function is
computed, and it is applied as is, or combined with previous values, in order to detect
a descent direction. After that, a line search is performed along the descent direction
and the minimum value of the objective function is identified along this line. All
the computations required in these phases are computed by using LF prediction plus
βT . At the end of the line search, HF is computed and compared with HFT , and the
relative difference is evaluated as

r =
HF2 − HF1

HFT2 − HFT1
. (4)

Where subscripts 1 and 2 indicate respectively the initial and final point of the
line search: r represents the ratio between the real and estimated improvement. We
can call it consistency check, since this is checking the consistency between the full
HF problem and the VF/VP problem. If r is sufficiently close to the unit value, we
can trust the local model βT inside this region and the trust region radius can be
increased. On the contrary, this is a sign that we cannot trust the model up to that dis-
tance, and the radius of the region is to be reduced: the step length of the line search
is reduced, and another solution is computed, and the consistency check repeated.
If the check fails repeatedly, and becomes too small, the model is recomputed and
re-initialized.

This classical formulation is well suitable for local optimization methods based
on derivatives. Results for ship design applications are reported in [23], where sav-
ings of about 75% are obtained. However, if a global optimization algorithm is ap-
plied, and derivatives are not computed, the framework is no longer convenient, since
the initialization of the approximated model βT requires the derivatives of both the
LF and HF objective function. Consequently, a global approximation/interpolation
model of the scaling factor β is needed: in this case, kriging interpolation model is
applied. The trust region radius is no longer a singled value function, but depends on
the computational point. Since we are using PSO algorithm for optimization, we can
assign a different ρi for each (ith) particle of the swarm. Each time both HF and LF
are computed, the consistency check is performed. If the new position of the particle
is located inside the trust region, HF is not computed, and only LF plus correction
is adopted. If the current best is improved, HF is computed, since the new position
would replace one of the attractors of the swarm, and we must verify the accuracy of
the prediction by βT + LF.
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3. Experimental methods

3.1. Model design and test plan

BSHC constructed a DC model with the main particulars tabulated in Table 1 and
equipped it with available stock WJ.

Initial testing showed excessive swirl and immersion of the nozzle, which was
rectified by adding extra fins at the stator and reducing the nozzle diameter. The new
design showed significant reduction in swirl and nozzle immersion. The DC model
was then shipped to INSEAN, who repeated the self-propulsion tests as a precursor
to forthcoming validation tests on the optimized design.

For towed bare hull (BH) experiments, the difference between the two facilities
was the location of the vertical pivot point. BSHC had a pivot point located above
the LCG = 1.91 m with KG = 0.28 m, whereas INSEAN used hinges at FP and
AP and adjustable height sliding towing post which allowed the pitch motions to be
centered about the center of gravity during self-propulsion tests, i.e., LCG = 1.91 m,
KG = 0.34 m.

For self-propelled (SP) experiments, BSHC assumed symmetry and performed
measurements only on the starboard side WJ, whereas INSEAN performed mea-
surements on both sides to account for installation uncertainty between the port and
the starboard waterjets. Both facilities followed the ITTC [13] procedural guidelines
described in detail in [20] and [21].

3.2. Overview of WJ test procedures

The ITTC Propulsion Committee [13] recommends the ‘momentum flux method’
using control volume analysis for prediction of the powering performance of a WJ

Table 1

Particulars of the DC geometry

Main particulars Symbol Model

Length overall, m LOA 3.8220

Length between perpendiculars, m LPP 3.6274

Length on waterline, m LWL 3.6274

Breadth moulded, single hull, m B 0.2904

Clearance b/n hull CPs, m – 0.8470

Draft at FP, m TF 0.1815

Draft at AP, m TA 0.1815

Displacement volume, m3 Δ 0.0770

Prismatic coefficient∗ CP 0.6160

Block coefficient∗ CB 0.4027

Longitudinal C.B.∗∗ LCB −0.0970

Wetted surface area (bare hull), m2 5 1.4220
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Fig. 3. Control volume for momentum-flux method: (a) EFD stations, (b) CFD inflow boundary shape.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

driven ship [32]. The control volume shown in Fig. 3(a) is defined by a stream-
tube consisting of the inlet (AB), an upstream imaginary surface in the flow through
which it is assumed no mass transport occurs (BC), ducting system, pump, nozzle
and outlet. The control volume boundaries capture all inflow, outflow of WJ system,
and provide ease of measurement of volume flow-rate (QSP), and momentum and
energy fluxes.

For all tested craft speeds, the inflow boundary was assumed rectangular and its
size was determined from BH inlet velocity-field measurements. Fig. 3(b) shows the
CFD inflow boundary at Fr = 0.5, which is elliptical similar to previous simulations
[31]. Van Terwisga [32] concluded that the inlet capture area for Athena was also
elliptical, but the shape does not have significant effect on the ingested momentum
and energy flux. The net jet thrust (TNET) of the WJ system is obtained from the net
rate of change of momentum over the control volume.

The WJ-hull system is decomposed into a BH system and a WJ system. This
facilitates independent evaluation of the pump efficiency (ηpump), ducting efficiency
(ηduct), jet efficiency (ηjet), and the thrust deduction factor (1 − t) that constitute the
overall WJ system efficiency (ηd). Note that the last term (1− t) can be alternatively
expressed as a product of wake fraction (1 − w), and hull efficiency ηH = (1 −
t)/(1−w), but were not essential for the present application, which focusses mainly
on ηduct.

ηd = ηpump × ηduct × ηjet × (1 − t). (5)
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Fig. 4. Waterjet system decomposition.

Figure 4 illustrates the flow of energy from the prime mover to the BH system
through the WJ system, which comprises of the pump, duct, and jet systems. The
measured BH resistance (RBH) and TNET at SP velocity (VShip) allow for the calcu-
lation of PE and PTE, respectively.

PE = RBH × VShip, (6)

PTE = TNET × VShip. (7)

PJSE is obtained from energy flux difference between station 7 (E7) and station 1
(E1), and PPE is obtained from energy flux difference between station 5 (E5) and
station 3 (E3).

PJSE = E7 − E1, (8)

PPE = E5 − E3. (9)
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Table 2

Powering and motions UFB

BH SP

RBH σBH τBH QSP TNET σSP τSP

UFB (%D̄) 0.7 7.7 9.8 0.1 0.7 2.9 0.9

PD is obtained from the measured revolutions per second (n) and toque (τ )

PD = 2π × n× τ. (10)

The theoretical framework proposed by the specialist committee was standardized
and validated by means of a rigorous experimental campaign from seven institutes on
an Athena model at Fr = 0.6 [32]. Subsequently, NSWCCD conducted extensive WJ
powering experiments the JHSS model equipped with four adjacent waterjets [15].

3.3. DC model test results

Quantitative estimation of facility bias [25] requires a minimum of three facilities.
Here, data (D) is available from two facilities, and a qualitative estimate for facility
bias (UFB) can be obtained as a percent of the mean data (D̄).

UFB =

∣∣∣∣DINSEAN −DBSHC

2

∣∣∣∣%D̄. (11)

Figure 5 shows the data from the flow rate measurements of the bollard pull tests
and the velocity profile measurements at stations 1 and 6, used for the momentum-
flux analysis. Figure 6 compares RBH,TNET,QSP, and the dynamometer shaft thrust
(TS) and Fig. 7 compares σ and τ for both BH (hollow symbols) and SP (filled
symbols) conditions. For the towed BH tests, the facilities show very good agreement
of all data up to Fr = 0.5. UFB for RBH progressively increases from 1.5% at Fr =
0.5, to 3.5% at Fr = 0.7. UFB for sinkage σBH increases with increasing Fr, and
the resulting variation in dynamic wetted area accounts for larger UFB for RBH at
higher Fr. Though the facilities have different vertical pivots, trim τBH shows good
agreement over the entire Fr range with average UFB = 9.8%. For Fr < 0.4, D̄ for
τBH approach zero resulting in large UFB values.

For SP measurements, QSP shows very good agreement over the Fr range with
average UFB = 0.1%. Table 2 provides a summary of the UFB values for the BH and
SP measurements.

Figure 8 shows the comparison of the decomposed system efficiencies. Accurate
calculation of PPE requires measurement of pressure head at stations 3 and 5, which
is challenging and expensive. Instead, both facilities used the product of TS and VShip
as an approximate measure for PPE. Since energy fluxes at stations 1 and 7 were
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Fig. 5. Flow rate and velocity profiles: (a) Bollard pull flow rate measurements, (b) Velocity profile at
station 1, (c) Velocity profile at station 6. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/ISP-130098.)

not calculated, PJSE is unavailable and ηduct and ηjet are not decomposed. ηduct ×
ηjet = PTE/PPE is reported instead. UFB values for the decomposed efficiencies are
tabulated in Table 3.

3.4. Analysis of experimental results

3.4.1. Performance analysis of DC WJ
An indication of the DC WJ design performance is obtained by comparing its

efficiencies with JHSS (Table 4) which serves as a benchmark [15]. All system effi-
ciencies for DC are smaller than JHSS.

JHSS has a larger ηpump since the experiments used full-scale thrust loading simi-
larity with the incorporation of an added tow force. The excess energy of the ingested
working fluid due to the added tow force creates a higher ram pressure at the impeller
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Fig. 6. Powering performance data. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/ISP-130098.)

Fig. 7. Sinkage and trim data. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/ISP-130098.)

plane resulting in better pump performance. Without an added tow force, the DC re-
quires larger QSP and n and the pump operates at a larger specific speed resulting in
a reduced efficiency.

This disparity also accounts for the difference in thrust deduction factor (1 − t) as
the larger QSP causes larger suction pressure at the inlet, and hence a greater increase
in σSP and τSP resulting in larger TNET.
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Fig. 8. Decomposed system efficiencies. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/ISP-130098.)

Table 3

Decomposed efficiencies UFB

ηD ηpump ηduct × ηjet 1 − t

UFB (%D̄) 2.1 0.5 1.3 1.2

Table 4

Decomposed efficiencies comparison

ηD (%) ηpump (%) ηduct × ηjet (%) 1 − t (%)

DC 28 45 66 85

JHSS 45 58 85 91

The jet velocity ratio JVR = Vship/Vjet and IVR = Vship/Vpump influence ηjet and
ηduct values, respectively. Note, to keep JVR and IVR values bounded when Vship
goes to zero, the definitions used here follow Bulten [3], which is the reciprocal of
that used in some literature.

JVR for DC and JHSS are 0.60 and 0.66, respectively. For optimal ηjet, JVR values
should be in the range of 0.65 and 0.75 [3]. Lower JVR values for DC result in excess
axial kinetic energy loss into the wake, thereby reducing ηjet.

IVR for DC and JHSS are 1.83 and 1.7, respectively. Waterjets with IVR values
greater than 1.8 have increased risk of separation at the top side of the inlet due
to sudden flow deceleration [3], thereby reducing ηduct. CFD simulations confirmed
the occurrence of flow separation for DC, making the inlet a good candidate for
optimization.
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Table 5

Comparison of UFB

TNET (%) QSP (%) σSP (%) τSP (%)

Athena ±18 ±5 ±116 ±27

DC ±0.7 ±0.1 ±2.9 ±0.9

3.4.2. Analysis of facility bias
The ITTC [13] standardized experimental campaign on the Athena model, which

was conducted by seven facilities, provides a basis of comparison for UFB. The val-
ues are compared in Table 5, and UFB for DC are significantly smaller. Both BSHC
and INSEAN participated in the experimental campaign on the Athena model, but
have had limited experience with the ITTC WJ model since that time.

4. Verification and validation

Qualitative validations of the HF and LF solutions were performed for both BH
and SP cases over the Fr range. Detailed quantitative verification and validation was
performed for Fr = 0.5.

4.1. Overview of V&V methodology

Verification and Validation procedures follow Stern et al. [27]. Verification proce-
dures estimate numerical uncertainties (USN) based on iterative (UI) and grid (UG)
uncertainties

USN =
√

U2
I + U2

G. (12)

Grid convergence studies are carried out for three solutions (S) with systematic
refinement ratio r = Δx2

Δx1
= Δx3

Δx2
, where 3, 2 and 1 represent the coarse, medium, and

fine grids, respectively. Solution changes ε and the convergence ratio R are defined
as εij = Si − Sj and R = ε12

ε23
. For monotonic convergence, 0 < R < 1, factor

of safety method [34] is used for estimations of UG. The ratio P = pRE
pth

is used to
estimate the factor of safety and UG is given by

UG =

{
(2.45 − 0.85P )|δRE|, 0 < P � 1,
(16.4P − 14.8)|δRE|, 1 < P ,

(13)

where,

δRE =
ε21

rpRE − 1
. (14)
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For oscillatory convergence, −1 < R < 0, UG is estimated from the upper and
lower bounds of the oscillation. UG is undefined for monotonic divergence, R > 1,
and oscillatory divergence, R < −1.

Validation procedure defines the comparison error (E) and the validation uncer-
tainty (UV) using experimental benchmark data (D) and its uncertainty (UD). If UV
bounds E, the combination of all the errors in D and S is smaller than UV and vali-
dation is achieved at the UV interval, where

E = D − S, (15)

UV =
√

U2
D + U2

SN. (16)

4.2. HF and LF models

Table 6 provides the WJ induced vertical forces (CTz) and moments (MTy) about
the centre of gravity, non-dimensionalized by the Vship and LWL.

Figure 9 shows the overset WJ grid used for HF simulations of duct flow using
the actuator disk model. Tnet and PPE vary relative to the square and cube of QSP,
respectively, and hence accurate prediction of QSP is vital. For the current study, the
duct was discretized using a single structured grid, which overlaps with the hull grid

Table 6

WJ induced forces and moments

Fr CTz MTy

0.3 −0.03 × 10−4 0.02 × 10−4

0.5 −3.93 × 10−4 1.61 × 10−4

0.7 −1.35 × 10−4 0.82 × 10−4

Fig. 9. Overset grid for duct discretization. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/ISP-130098.)
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Table 7

Multi-block grid densities

Block # Description # grid pts

1 Inner-hull 3,540,908

2 Outer-hull 3,540,908

3 Duct 4,099,579

4 Refinement 2,285,061

5 Background 4,355,778

Total 17,822,233

at the inlet and the nozzle exit since additional overset grids inside the duct cause
interpolation errors as seen in Takai et al. [31].

Table 7 shows the fine grid (S1) densities for the overset blocks used for the HF
simulations. The HF and LF solvers used systematic refinement ratios r =

√
2 and 2,

respectively.
For LF, the same number of grid panels has been used for hull and free surface:

6000 on S1, 3000 on S2 and 1500 on S3, for a total number of panels of 12,000 on
S1, 6000 on S2 and 3000 on S3. For HF simulations the grids densities for S1, S2 and
S3 are 17.8M, 6.3M and 2.3M, respectively.

4.3. Qualitative validation over Fr range

HF solutions using the medium grid were obtained at Fr = 0.3, 0.5 and 0.7 for
both BH and SP simulations. LF solutions were obtained over the Fr range for BH
simulations, and at Fr = 0.5 using the simplified CFD WJ model. The solutions are
compared with D̄ over the Fr range in Fig. 10.

For BH simulations, RBH for both HF and LF calculations agree well with D̄. σ for
LF calculations are under-predicted for Fr < 0.5 and over-predicted for Fr > 0.5 and
τ calculations show a reversed trend. σBH for HF calculations are under-predicted for
all values and τBH is under-predicted at Fr = 0.5.

For SP simulations, both HF and LF calculations under-predict TNET, QSP and
σSP for Fr � 0.5. Data is unavailable for Fr = 0.3. τSP is over-predicted by HF and
under-predicted by LF.

4.4. Quantitative V&V at Fr = 0.5

At Fr = 0.5, a grid verification and validation study was conducted for both bare-
hull and self-propelled simulations. RBH, σBH and τBH for both LF and HF sim-
ulations are tabulated in Table 8. UI is negligible and USN = UG. Both HF and
LF solutions show monotonic grid convergence for all the quantities. For all cases,
0 < R < 1, and monotonic convergence was achieved. For HF calculations P < 2
and reasonably close to 1. For LF calculations P > 3, which make the USN calcu-
lations unreliable since the available database used by Xing and Stern [34] for the
development of the factor of safety method was restricted to P < 2.
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Fig. 10. Qualitative V&V. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/ISP-130098.)

Table 8

BH verification of HF and LF solutions

S3 S2 S1 R P USN

HF BH

RBH 84.75 86.03 86.52 0.38 1.39 2.78

σBH 3.173 3.188 3.192 0.29 1.82 0.17

τBH 1.569 1.669 1.712 0.43 1.22 9.79

LF BH

RBH 86.70 87.97 88.09 0.12 3.00 0.26

σBH 4.129 4.188 4.191 0.50 6.92 0.05

τBH 1.754 1.790 1.794 0.11 6.34 0.04
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Table 9

BH validation of HF and LF solutions

D UFB UV E

HF LF HF LF

RBH 89.06 3.00 3.85 3.01 0.55 −1.09

σBH 3.182 1.31 1.31 1.31 0.20 31.57

τBH 1.751 1.00 9.84 1.00 2.33 2.63

Table 10

SP verification of RANS and LF solutions

S3 S2 S1 R P USN

HF SP

QSP 1.860 1.897 1.915 0.49 1.04 2.15

TNET 96.16 102.02 104.22 0.38 1.41 2.91

σSP 4.731 4.855 4.762 – – 1.29

τSP 2.763 2.585 2.687 – – 3.64

PPE 194.87 201.12 204.02 0.46 1.11 4.16

LF SP

TNET 93.13 94.39 95.02 0.45 2.29 0.7

σSP 4.845 4.827 4.883 – – NA

τSP 2.081 2.123 2.140 0.49 2.08 2.14

Since precision and bias errors were not quantified in the experiments, UFB was
used for validation. DINSEAN was used for calculating E, since the optimized hull
will also be tested at that facility. Table 9 shows the results of the validation stud-
ies. Except for LF σ, whose |E| lies outside the UV interval, all other solutions are
validated.

For SP simulations, solutions HF calculations were verified and validated for QSP,
TNET, PPE, σSP and τSP. PPE was obtained by calculating energy difference between
stations 5 and 3. LF calculations were verified and validated for TNET, σSP and τSP.
The HF and LF solutions are tabulated in Table 10. UI is negligible and USN = UG.
HF solutions show monotonic grid convergence for QSP, TNET and PPE, and oscil-
latory convergence for σSP and τSP. LF solutions show monotonic grid convergence
for TNET, and τSP, and oscillatory divergence for σSP.

Table 11 shows the validation results for the different quantities. HF solutions |E|
lie outside the UV interval for PPE. Note that the PPE estimate from the experiments
does not account for viscous energy losses between station 3 and 5, and hence is
prone to over-estimation. LF solutions |E| lie outside the UV interval for TNET.

The numerical uncertainty levels are similar to than obtained for JHSS [31]. The
validation errors are smaller than that for JHSS, due to the elimination of overset
grids within the duct. For DC, |E| = 2% and 4% for QSP, and TNET, respectively,
compared to 5.6% and 6.5% for JHSS.
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Table 11

SP validation of RANS and LF solutions

D UFB UV E

HF LF HF LF

QSP 1.95 0.51 2.21 NA −2.05 NA

TNET 106.9 3.21 4.35 3.28 −4.17 −11.1

σBH 4.87 1.34 3.58 NA −2.30 NA

τBH 1.75 2.91 2.47 3.61 −2.33 2.63

PPE 232 8.20 9.22 NA −12.06 NA

5. Single objective resistance optimization using CFD WJ model

To facilitate greater variability of the design space, IIHR, DTMB and INSEAN
conducted initial geometry sensitivity studies with the CFD WJ model to determine a
feasible design space using different approaches. Multiple geometries were obtained
using different geometry modification techniques; B-spline, Free Form Deformation
(FFD), and CREATE-SHAPE [33], with resistance reductions varying from 0.5% to
1.5% compared to the original geometry. A morphing method, which enables direct
construction of the design space by integrating the best geometries from the different
sensitivity studies, was used for the optimization. The overall optimization process
used a four-pronged approach by IIHR, DTMB, NMRI and INSEAN:

• IIHR and DTMB performed a single objective PSO optimization for resistance
at Fr = 0.5 using different combinations of the initial geometries to explore
different subset design spaces.

• INSEAN performed single objective PSO optimization for resistance at Fr =
0.5 using both variable fidelity and high fidelity optimization using generalized
FFD with PSO optimizer to investigate computational cost reduction.

• NMRI performed MOGA for resistance at three speeds: Fr = 0.3, 0.5 and 0.7
[30].

The best BH geometries obtained for Fr = 0.5 from the different optimization ap-
proaches were then verified using RANS with identical grid size, grid topology and
solver convergence criteria. The best geometry (Fig. 11) showed a resistance reduc-
tion of 4% due to significant reduction of the interference region trough (Fig. 12) and
was selected for subsequent WJ inlet optimization.

6. Design optimization for overall propulsive efficiency of WJ propelled hull

Figure 13 shows the results from the sensitivity analysis performed on the WJ
inlet shape. The streamlines and CP contours at the WJ inlet symmetry plane for
the original geometry and the modified geometry are illustrated. Sensitivity analysis
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Fig. 11. Comparison of the original (red) and optimized (green) starboard demi-hulls. (The colors are
visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

Fig. 12. Wave elevation comparison. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/ISP-130098.)

on the transition angle, inlet-angle and ramp-radius showed that a reduction of the
angles, combined with an increase in the ramp radius with a widened inlet rectified
the flow separation and increased ηduct.

Figure 14 illustrates the inlet ramp design variations intended for smoother transi-
tion and increasing boundary layer ingestion for recovery of residual kinetic energy
lost to the wake.

The PSO optimization was performed on a coarse grid by morphing three initial
geometries constructed with the three combinations of the design variables. The flow
solver was tuned for trend identification with a liberal convergence criterion to in-
crease computational speed. The optimal design indicated ∼10% reduction in PPE.
However, a grid refinement analysis of the optimized geometry revealed unforeseen
problems: the fine grid solution predicted deeper trough at the stern with the free
surface very close to the inlet, which was judged a possible cause of air ingestion
into the WJ inlet. Therefore, local modifications on the inner side of the demi-hull –
close to the WJ-inlet – were made (Fig. 15) and a geometrically constraint-based
optimization was performed. The constraint was defined as the minimum distance
function from the free surface to the inlet to be greater than or equal to the origi-
nal Delft catamaran. Since the geometry variations were localized, the speed of the
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Fig. 13. Design variable sensitivity analysis: (a) original geometry, (b) modified geometry. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

Fig. 14. Inlet ramp design variation: (a) original geometry, (b) modified geometry. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

Fig. 15. Localized inlet design variations, green shade is the initial optimized geometry, grey shade is
the modified design. (The colors are visible in the online version of the article; http://dx.doi.org/10.3233/
ISP-130098.)
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Fig. 16. Localized inlet design variations to minimize possibility of air entrainment. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

Fig. 17. Original and optimized waterjets. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/ISP-130098.)

fine grid computations was increased by using restart solution files from compara-
ble geometries. The solutions for the final optimized geometry is shown in Fig. 16
compared to the initially optimized geometry.

Comparison of the duct surface pressure contours on the original and optimized
hulls (Fig. 17) illustrates the increase in ram pressure on the forward facing walls of
the optimized duct. This added potential energy develops additional pressure at the
nozzle, which converts it to kinetic energy at exit and increases the WJ efficiency.

Detailed performance comparisons are tabulated in Table 12. The optimized hull
shows 11% decrease in powering requirement. The WJ system efficiencies for the
duct, and thrust deduction are improved by 6.7% and 1.32%, respectively. The jet
efficiency shows a modest improvement of 0.1%.

Grid verification studies (Table 13) were conducted for the optimized geometry,
using both barehull and self-propelled simulations. UI is negligible and USN = UG.
For all cases, 0 < R < 1, and monotonic convergence was achieved. P < 2 and
reasonably close to 1. The USN values are similar to that obtained for the original
geometry.

Previous optimization of the JHSS waterjet inlet curvature using the same method-
ology yielded a just 2% decrease in powering requirement. However, a drastic design
modification by merging the adjacent inlets (Fig. 18) yielded an 8% decrease in pow-
ering requirement.
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Table 12

Performance comparison

Ori. Opt. Opt%Ori

Resistance

RBH 4.32E+01 4.15E+01 −3.94

TNET 5.21E+01 4.94E+01 −5.18

Powering

PE 1.29E+02 1.24E+02 −3.94

PTE 1.55E+02 1.47E+02 −5.18

PJSE 1.80E+02 1.71E+02 −5.28

PPE 2.04E+02 1.81E+02 −11.22

Waterjet system efficiencies

ηduct 8.82E−01 9.41E−01 +6.70

ηjet 8.63E−01 8.64E−01 +0.10

(1 − t) 8.29E−01 8.40E−01 +1.32

Table 13

Optimized geometry verification

S3 S2 S1 R P USN

BH with CFD WJ model

RBH 81.05 82.52 83.11 0.40 1.32 3.24

σBH 3.164 3.193 3.205 0.41 1.27 0.47

τBH 1.504 1.615 1.667 0.47 1.09 8.64

SP with discretized duct

QSP 1.832 1.861 1.874 0.45 1.16 2.36

TNET 92.14 97.05 98.83 0.36 1.46 2.51

σBH 4.578 4.727 4.765 0.26 1.97 4.79

τBH 2.511 2.632 2.677 0.37 1.43 8.56

PPE 171.68 178.84 181.12 0.32 1.65 7.22

7. Multi-objective optimization using CFD WJ model

The definition of the multi-objective optimization problem is based on the selec-
tion of three objective functions, that is, the total resistance at the speed of Fr = 0.3,
0.5 and 0.7. A subset of the previous base hulls has been adopted, in order to reduce
the overall dimension of the design space and the complexity of the optimization
problem accordingly. Since the objective functions are now three, the overall com-
putational cost is triple, since three distinct runs of the HF solver are needed in order
to produce the complete evaluation of one position in the design variable space.

For this multi-objective problem, the final solution of the problem is not repre-
sented by a single geometry, but by a suite of different solutions, representing the
Pareto optimal set. In the case of three objective functions, the Pareto optimal set
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Fig. 18. Optimization of JHSS waterjet by merging the inlets. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/ISP-130098.)

is represented by a 3D surface, and its representation and visualization is not easy.
Consequently, here are reported three different views, orthogonal to each coordinate
axis related to an objective function. In each graph, the variety along the missing
axis is lost, but we can observe to position of some interesting solutions and their
performances in comparison with all the other solutions.

In Fig. 19, the three different views are reported. Red dot is indicating the best
solution for function 1 (total resistance at Fr = 0.3), green dot is indicating the best
solution for function 2 (total resistance at Fr = 0.5), and blue dot is indicating the
best solution for function 3 (total resistance at Fr = 0.7). It is evident how there is not
improvement for the first objective function: this is probably connected to the fact
that the base geometries are obtained with a particular emphasis to the central speed
Fr = 0.5. Looking at the second view, reporting second and third objective functions,
a correlation is nearly evident, also if there are two distinct solutions representing the
best for each objective function. On the contrary, the cloud of points in the space of
the first and second objective function, as well as for the space of the first and third,
is not crossing the vertical axis, showing a negative correlation. This means that
an improvement on one of the objective if resulting into a deterioration of the other
objective, that is, the two objectives are in opposition each other, and it is not possible
to improve them together. A different parameterization scheme would be probably
able to provide improved shapes also for the lower speed, while it is not possible
to argue if the complete opposition between the objective functions is solvable by
changing the parameterization or not.

In Fig. 20, a comparison between the section views for the original DC and one of
the Pareto optimal solutions is reported, together with a comparison of the sectional
area curve distributions. It is possible to clearly observe how there is a shift of the
volume from inner to outer, and from stern to bow.
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Fig. 19. Different views of the Pareto front for the multi-objective optimization problem. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)
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Fig. 20. Comparison between the original shape and the shape of best compromise solution for the three-
objectives optimization problem. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/ISP-130098.)

8. Variable fidelity optimization for computational efficiency as proof of
concept

The overall goal of the VF/VP approach is to obtain a significant CPU time reduc-
tion while at the same time, regain the same optimal solution as if we were solving
the full-HF problem. Therefore, to assess the success of the VF/VP algorithm, the
same optimization problem (same parameterization, constraints and objective func-
tion) for the DC has been carried out twice: first using the HF alone and then solving
again the same problem using the VF/VP algorithm.

The parameterization scheme used is this test is the FFD approach. A single FFD
box surrounds the hull: 4 parameters are used to shift the hull sections sideways, one
is used to move the sections longitudinally and one is used to change the transom
stern depth, for an overall number of 6 design variables.
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Fig. 21. Transversal sections of the original (black) and optimized hulls (red), both full HF and VF/VP so-
lutions. (The colors are visible in the online version of the article; http://dx.doi.org/10.3233/ISP-130098.)

The shape of optimal design obtained by the HF and by VF/VP is substantially
the same. The two geometries are superimposed in Fig. 21. In terms of computed
objective function, the difference between full HF and VF/VP is of about 0.05%
(6.4412 for the full HF, 6.4447 for the VF/VP). A great reduction is obtained instead
in the computational cost: the HF optimization has required 940 HF evaluations of
the objective function, while the VF/VP only needed 532 HF computations, plus 940
(almost inexpensive compared to HF SMD) LF evaluations. The overall CPU time
reduction is therefore about 54%.

9. Conclusions

A simulation-based design optimization for the hull and WJ inlet was carried out
for the powering optimization of WJ propelled DC, using integrated computational
and experimental fluid dynamics. A WJ equipped DC was constructed and tested at
two facilities with good agreement of data. The data was used to validate the LF and
HF solvers and for the formulation of a simplified CFD WJ model that was used in
conjunction with the LF optimization.

The particle swarm optimizer was used for single speed optimization at Fr = 0.5,
and genetic algorithms were used for multi speed optimization at Fr = 0.3, 0.5
and 0.7. The multi-speed optimization showed design improvement at Fr = 0.5 and
0.7, but not at Fr = 0.3 since the design variables were obtained with a particular
emphasis to the higher speeds. High fidelity simulation results for the optimized
barehull geometry at Fr = 0.5 indicated 4% reduction in resistance and the optimized
WJ equipped geometry indicated 11% reduction in effective pump power required at
self-propulsion.

Ongoing developments for geometric variability exploration, based on Karhunen–
Loève expansion (KLE), have shown the capability of producing a wider range of
design possibilities with deeper improvements [10,12]. Accordingly, a new optimiza-
tion campaign [8] will be performed using reduced dimensional research spaces as
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provided by KLE analysis. Meta-models and/or VF/VP approaches will be used to
reduce the computational time.

Best design overall will be built and tested at INSEAN using the same experi-
mental set-up as was used for the original model, to reduce the comparison errors.
A complete set of tests is planned in the near future.

Future direction for design optimization is to include uncertainty effects on objec-
tives and constraints. Ship designers have been always concerned with the uncertain-
ties of the environment in which the ship sails (waves, winds, currents) since mostly
not avoidable and often responsible for performance loss and failures. Robust and
reliability-based design optimization methods, developed to improve product quality
and reliability in industrial engineering, are to prevent performance drop when oper-
ating in off-design conditions and avoid dramatic failures in the case of exceptional
events. The Bayesian approach is used to formulate the problems of robust design
optimization (RDO) and reliability-based design optimization (RBDO). These re-
quire the uncertainty quantification (UQ) of the relevant simulation outputs over the
stochastic inputs domain. The difficulty with exploiting this framework is mainly
computational, since UQ requires the numerical integration of expensive simulation
outputs over the uncertainties involved. Accordingly, research in UQ is an important
precursory step for RDO/RBDO providing the impact of stochastic inputs on relevant
outputs and identifying the most efficient UQ methods (such as meta-models based
analyses) for the problem addressed. Earlier and current UQ research includes devel-
opment and assessment of a framework for convergence, validation, and comparison
with deterministic V&V of UQ studies. Applications include NACA 0012 hydrofoil
with variable Re [22]; UQ of DC calm water resistance, sinkage and trim with vari-
able Fr and geometry [10]; and UQ for DC resistance, motions and slamming loads
in stochastic wave and variable geometry [12]. Future RDO/RBDO activities will
focus on DC optimal design for reduced resistance, motions and slamming loads in
stochastic wave at sea state 7 [11]. Geometric variability will be explored using KLE
and, in order to keep the computational effort reasonable, optimization and UQ will
be performed using metamodels and/or VF/VP methods.

Savings obtained are demonstrating the usefulness the VF/VP formulation. For this
reason, further verification of the VF/VP approach will be also carried out in the near
future, in order to gain more insight about the potential of this technique. Different
formulations of the scheme, including the use of the variance estimation provided by
the kriging meta-model in order to adapt the “trust region” radius dynamically will
be explored.
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