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Advances in high-fidelity shape optimization for industrial problems are presented, based on geometric
variability assessment and design-space dimensionality reduction by Karhunen–Loève expansion, meta-
models and deterministic particle swarm optimization (PSO). Hull-form optimization is performed for
resistance reduction of the high-speed Delft catamaran, advancing in calm water at a given speed, and free
to sink and trim. Two feasible sets (A and B) are assessed, using different geometric constraints. Dimension-
ality reduction for 95% confidence is applied to high-dimensional free-form deformation. Metamodels are
trained by design of experiments with URANS; multiple deterministic PSOs achieve a resistance reduction
of 9.63% for A and 6.89% for B. Deterministic PSO is found to be effective and efficient, as shown by
comparison with stochastic PSO. The optimum for A has the best overall performance over a wide range of
speed. Compared with earlier optimization, the present studies provide an additional resistance reduction
of 6.6% at 1/10 of the computational cost.

Keywords: shape optimization; dimensionality reduction; Karhunen–Loève expansion; surrogate-based
optimization; particle swarm optimization

List of symbols

Aws static wetted surface area (m2)
Awso static wetted surface area of the original model (m2)
Ct total resistance coefficient = Rt

0.5ρU2Ao

Cf friction resistance coefficient
Cr residuary resistance coefficient
D experimental data value
ε12 change between solutions S1 and S2

E comparison error
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2 X. Chen et al.

f objective function
Fr Froude number = U√

gLpp

g acceleration due to gravity = 9.81 m/s2

g( x) hull geometry
gj(x) jth inequality constraint
hj(x) jth equality constraint
λk kth Karhunen–Loève expansion eigenvalue
LOA length overall (m)
Lpp length between perpendiculars (m)
Nr number of random particle swarm optimization procedures
Ns particle swarm size
P order of convergence
ψk kth principal geometry, provided by Karhunen–Loève expansion
r grid refinement ratio
R convergence ratio
Rt total resistance (N)
S computational fluid dynamics solution value
U velocity (m/s)
Uy uncertainty associated with quantity y
W ship weight force (N)
xk design variables
δ non-dimensional displacement
ρ water density at operating temperature (kg/m3)
σ non-dimensional sinkage
τ trim (rad)

1. Introduction

Simulation-based design (SBD) optimization constitutes an essential part of the design pro-
cess for complex engineering systems. High-fidelity simulations are used with minimization
algorithms to identify the best solution to the design problem. Within shape design, simula-
tion tools are integrated with geometry modification and automatic meshing algorithms (Kotinis
and Kulkarni 2012). Shape optimization has been widely applied in aerospace, automotive and
naval applications, including structural optimization (Papadrakakis, Tsompanakis, and Lagaros
1999), computational fluid dynamics (CFD)-based design (Mohammadi and Pironneau 2004)
and fluid–structure interaction (Jakobsson and Amoignon 2007). High-fidelity simulation-based
shape design for complex industrial problems remains a demanding process, from theoretical,
algorithmic and technological viewpoints.

Potential improvements in shape optimization depend on the dimensionality and geometric vari-
ability of the research space. Low-dimension and low-variability spaces are usually easy to explore,
but the expected improvement is usually small. High-dimension and high-variability spaces are
usually more difficult and expensive to explore but potentially allow for greater improvements.
Shape optimization research focused on shape and topology parameterization as critical issues to
achieve the desired design variability (Samareh 2001). Geometry can be represented and modi-
fied by means of polynomials, splines (Haftka and Grandhi 1986), B-splines (Grigoropoulos and
Chalkias 2010), non-uniform rational B-spline (NURBS) and Bezier curves (Campana et al. 2006),
free-form deformation (FFD) (Peri and Campana 2008), morphing approaches (Kandasamy et al.
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Engineering Optimization 3

2013), basis vector methods, domain element and discrete approaches (Samareh 2001). In most
studies, the trade-off between geometric variability and space dimensionality is not addressed or
is only qualitatively assessed.

Karhunen–Loève expansion (KLE) was used for representing distributed geometric uncertain-
ties and building reduced-order spatial models for uncertainty quantification by Borzì et al. (2010)
and Schillings, Schmidt, and Schulz (2011). Diez, Campana, and Stern (2012) used KLE to assess
the geometric variability of the optimization research space and build a reduced-dimensionality
global model. Reduced-dimensionality models based on KLE were used by Diez, Campana,
and Stern (2013) and He et al. (2013) for design-related geometric uncertainty quantification.
Raghavan et al. (2013) make use of principal components analysis for building a reduced-order
local model for shape representation. Applications and theory of dimensionality reduction for
high-fidelity shape optimization remain limited.

To reduce the computational cost, SBD is often performed by surrogate models (Won and Ray
2005). Recent research in metamodelling moved from static to dynamic approaches (adaptive
sampling and auto-tuning) (Zhao, Choi, and Lee 2011) and from single models to ensemble of
surrogates (Goel et al. 2007). The reliability of metamodels during optimization remains a critical
issue, especially when global optimization is performed.

Derivative-free global optimization procedures, such as particle swarm optimization (PSO)
(Kennedy and Eberhart 1995), are usually preferred to derivative-based local approaches when
objectives are noisy, derivatives are unknown and the existence of multiple local optima cannot
be excluded. For ship hydrodynamics applications, it has been shown that derivative-free global
algorithms are more effective than local methods (Campana et al. 2009). When global techniques
are used with high-fidelity solvers, the optimization process is computationally expensive and its
efficiency remains an algorithmic and technological challenge.

Traditionally, in ship design the hull shape is evaluated by towing tank experiments aimed at
total resistance at fixed speeds in calm water. The model is free to achieve its dynamic equilibrium,
defined by the sinkage and the trim angle. SBD using high-fidelity CFD is replacing the build-and-
test approach, providing opportunities for improved analyses and innovative/optimized designs.
SBD is demonstrating capabilities for complex applications including the topic of the present
research, i.e. the high-speed Delft catamaran (DC), a concept ship used as a benchmark for
numerical and experimental studies. SBD for the DC is given by Kandasamy et al. (2013), where
the hull form and waterjet system were optimized using global evolutionary algorithms with a
morphing technique for the hull modification, based on six initial designs and allowing for a 3%
reduction in calm-water resistance. Diez et al. (2012) showed that the morphing approach used
was too stiff, not allowing for large design variability. Some of the initial designs were found
to be linearly dependent, thus providing a degenerated research space with a number of design
variables greater than the space dimension. Identification of the optimal shapes required a large
simulations budget.

The objective of the present research is the development and application of a methodology for
effective, efficient and reliable high-fidelity global optimization for shape design, based on design-
space dimensionality reduction by KLE, multiple metamodels using global and local design of
experiments (DoE), and multiple global minimization procedures.

KLE is applied to reduce the dimensionality of an FFD design space, retaining 95% of the
original geometric variance. Deterministic PSO (Campana et al. 2009) is used with several coef-
ficient sets. To confirm the effectiveness and efficiency of deterministic PSO, this is compared
with statistically converged results from stochastic PSO, for one of the problems solved. Multi-
ple approximation models are used, coupled with a DoE method, and trained by URANS. The
application is the shape optimization of the DC bare hull. The design objective is to minimize
the calm-water resistance at fixed speed. Two feasible sets are investigated, based on different
geometric constraints.
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4 X. Chen et al.

2. Simulation-based design problem formulation

The DC parent hull is shown in Figure 1 and details are given in Kandasamy et al. (2013). The
model is free to sink and trim. Herein, a full-scale length equal to 100 m and a design speed equal
to 29 kt is assumed, corresponding to Froude number (Fr) equal to 0.5, and dimensional speed
equal to 2.98 m/s for a 3.627 m towing tank model. Reduction of power required, P = RtU, is
taken as the optimization objective (U is the ship speed and Rt the total resistance). Since Uis
equal to the design speed, the optimization objective reduces to Rt .

Geometry modifications have to fit in a box, defined by maximum overall length, beam and
draught. The ship displacement is considered fixed (within a 1% tolerance). A similar approach
was used by Tahara et al. (2011) for high-speed multihull optimization, and Grigoropoulos and
Chalkias (2010) for monohulls. As a significant design parameter, the length between perpen-
diculars, Lpp, is often considered to be fixed, as shown in Kandasamy et al. (2013). To compare
the present research with earlier work, two constraints sets are used and shown in Table 1. The
first (referred to as problem A) includes the overall dimension bounds; the second (referred to
as problem B) includes the overall dimension bounds and, in addition, constant length between
perpendiculars.

Figure 1. Main dimensions for Delft catamaran 372 model.

Table 1. Geometric constraints sets and optimization problems.

No. of design Simulations
Problem Geometric constraints Valuea variables Objective budget

A Max. overall length, LOA 100 4 Rt/W evaluated at
design speed

120

Max. beam, B 100
Max. draught, T 100
Max. displacement variation, |	δ| 1

B Same as problem A, with in
addition: constant length
between perpendiculars, Lpp

100 6 180

Note: aValues refer to % of original hull.
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Engineering Optimization 5

The design problem is formulated as a constrained single-objective minimization problem:

Minimize f (x)

subject to lk ≤ xk ≤ uk , k = 1, . . . , n

and to gj(x) ≤ 0, j = 1, . . . , G

and to hj(x) = 0, j = 1, . . . , H

(1)

where x is the design variables vector {xk}n
k=1, with bounds lk , and uk; xk provide global hull-

geometry modifications, based on FFD and KLE as per Section 3.1. These modify simultaneously
ship length, demi-hull beam, draught, waterline design, and associated centre of buoyancy and
block coefficient. Functions in Equation (1) are:

f (x) = Rt(x)

W(x)
g1(x) = LOA(x)

LOA,ori
− 1 g2(x) = B(x)

Bori
− 1

g3(x) = T(x)

Tori
− 1 g4(x) =

∣∣∣∣δ(x) − δori

δori

∣∣∣∣ − 10−2

(2)

with the additional constraint for problem B,

h1(x) = Lpp(x)

Lpp,ori
− 1 (3)

where W is the ship weight force, LOA is the overall length, B is the beam, T is the draught, and δ

is the ship (non-dimensional) displacement. Subscript ori indicates parent hull values.

3. Simulation-based design framework

The SBD framework includes geometry modifications based on FFD and dimensionality reduc-
tion by KLE, multiple global metamodels and minimization procedures based on DoE using
URANS and PSO, as shown in Figure 2. The procedure follows two macro-iterations; the first
includes initial global DoE, surrogate analysis and optimization, whereas the second encompasses
a refinement of the training set.

3.1. Geometry modifications by free-form deformation and Karhunen–Loève expansion

KLE, also known as proper orthogonal decomposition and equivalent (under certain conditions) to
principal components analysis, provides a breakdown of the geometric variability spanned within
the design space and is used for dimensionality reduction, based on 95% confidence (Diez et al.
2012). Before optimization, the shape design problem is considered as a problem affected by
epistemic uncertainty: the optimal solution in considered unknown, with uniform probability of
occurrence in the design space. This is sampled randomly using a number of S geometries,{gj}S

j=1.
Random items are given by arbitrary geometry deformation techniques. FFD is used herein since
it allows for high design flexibility and is independent of grid topology (Peri and Campana 2008).
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6 X. Chen et al.

Figure 2. Simulation-based design procedure. FFD = free-form deformation; KLE = Karhunen–Loève expansion;
DoE = design of experiments; PSO = particle swarm optimization.

The mean geometry is defined as

ḡ = 1

S

S∑
j=1

gj (4)

The principal directions, zk , of the research space defined by the linear expansion (formally the
KLE of the geometry modifications space)

g = ḡ +
K∑

k=1

αkzk (5)

are solutions of the eigenproblem

Rzk = λkzk (6)

where R = (GGT )/S, with G = [g1 − ḡ . . . gS − ḡ]. K = 3NG is the actual dimension of the
space, with NG number of grid nodes (three-dimensional case). The eigenvalues λk represent
the geometric variance associated with the corresponding eigenvector zk and are used to assess
the total geometric variance and build a reduced-dimensionality space, based on 95% confidence
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Engineering Optimization 7

as:

g(x) =
(

1 −
n∑

k=1

xk

)
ḡ +

n∑
k=1

xkψk (7)

where ψk = ḡ + sup{GT zk}zk , −1 ≤ xk ≤ 1, and n is chosen such that

n∑
k=1

λk ≥ 0.95
K∑

k=1

λk (8)

with
K∑

k=1

λk = 1

S

S∑
j=1

(gj − ḡ)2 = Var(g) (9)

defining the total geometric variance of the space.
Equations (4)–(9) represent the framework for research space dimensionality reduction and can

be applied to arbitrary geometry modification techniques, taking as input a random set of shape
designs and providing as output the principal directions of the design space (eigenvectors) with
the associated geometric variance (eigenvalues). New designs are generated as per Equation (7),
by linear combination of principal geometries. According to KLE theory, no greater geometric
variance can be retained by any other linear expansion of order n. Using Equations (4)–(9),
research spaces can be reduced in dimensionality before optimization, with a significant increase
in SBD efficiency.

3.2. Global minimization algorithm: deterministic particle swarm optimization

PSO iteration is given by

vi
j = χ [wvi−1

j + r1c1(pj − xi−1
j ) + r2c2(g − xi−1

j )] (10)

xi
j = xi−1

j + vi
j (11)

for j = 1,…,Ns, where Ns is the swarm size; xi
j is the position of the jth particle at the ith iteration,

pj is the best position ever visited by the jth particle (personal optimum), and g is the overall best
position ever visited by all the particles (global or social optimum); χ , w, c1 and c2 are coefficients
or weights controlling damping, inertia and personal/social behaviour of the swarm; r1 and r2 are
random coefficients (uniformly distributed from 0 to 1) used by Kennedy and Eberhart (1995).
When deterministic PSO is used, r1 = r2 = 1. Three sets of deterministic coefficients are used
herein, taken from Eberhart and Shi (2000), Shi and Eberhart (1998), and Peri and Tinti (2012),
as summarized in Table 2, which also includes random implementation. The latter is assessed
focusing on expected value (EV ) and standard deviation (SD) of minimum f̂

EV(f̂ ) = 1

Nr

Nr∑
i=1

f̂i SD(f̂ ) =
√√√√ 1

Nr

Nr∑
i=1

[
f̂i − EV(f̂ )

]2
(12)

along with their convergence ratio and absolute per cent solution change (Mousaviraad et al.
2013)

Rk = Yk − Yk−1

Yk−1 − Yk−2
Nr,k = Nr,02k−1 (13)

where k indicates the convergence iteration and Y stands for EV or SD. Iterations are defined by
a sample size equal to Nr,k = Nr,02k−1, where Nr,0 indicates initial value. |R| is required to be less
than 1, with ε ≤ 1%.
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8 X. Chen et al.

Table 2. Initial speed and coefficient sets used for particle swarm optimization (PSO).

Coefficients, as per Equation (10)
PSO coefficient
set # Initial speed c1 c2 w χ Ref.

1 Null 1.494 1.494 0.729 1.000 Eberhart and Shi (2000)
2 1.200 1.200 0.900 1.000 Shi and Eberhart (1998)
3 2.042 1.150 0.720 1.047 Peri and Tinti (2012)
4 Hammersley, Equation (15) 1.494 1.494 0.729 1.000 Eberhart and Shi (2000)
5 1.200 1.200 0.900 1.000 Shi and Eberhart (1998)
6 2.042 1.150 0.720 1.047 Peri and Tinti (2012)
Random 2.000 2.000 1.000 1.000 Kennedy and Eberhart (1995)

During swarm optimization, box and functional inequality constraints are treated by a linear
penalty function of the type:

φ(x) =

⎧⎪⎨
⎪⎩

1

η
g(x), g(x) > 0

0, otherwise

(14)

with η = 0.01. pj and g in Equation (10) are based on f̂ (x) = f (x) + φ(x). Equality constraints
are automatically satisfied by the geometry modification.

The swarm dimension Ns is set to 20 n, where n is the design space dimension. The initial
swarm position, x0

j , is defined using a Hammersley distribution (Wong, Luk, and Heng 1997) over
the design space of Equation (7). The initial speed, v0

j , is considered null or equal to

v0
j = 2√

n

[
x0

j − (l + u)

2

]
(15)

where l and u are lower and upper bound vectors, as per Equation (1). The maximum number of
PSO iterations is set to 100. The resulting maximum number of function evaluations is 2000 n per
PSO procedure. Combining different deterministic coefficient sets with initial speed assumptions
results in six separate PSO procedures (Table 2).

3.3. Design of experiments and metamodels

All metamodels are trained using an initial DoE, which follows a Hammersley distribution. The
training set size is set to 20 n. The following metamodels are used: stochastic ensemble of radial
basis functions network (SE-RBFN) with (1) power law kernel and (2) multiquadric kernel; ordi-
nary kriging (OKG) with (3) exponential covariance function and (4) linear covariance function;
least-square support vector machine (LS-SVM) with (5) multiquadric kernel and (6) inverse mul-
tiquadric kernel; and polyharmonic spline (PHS) of (7) first order and (8) second order. SE-RBFN
is based on Volpi (2013), OKG is taken from Peri (2009), and LS-SVM and PHS are based on
Suykens et al. (2002) and Wahba (1990), respectively. Metamodel parameters are taken from Diez
et al. (2013) and He et al. (2013), where surrogate model studies were conducted and discussed
for the DC advancing in calm water and waves, including variable speed, wave parameters and
geometry. Deterministic PSO procedures in Table 2 are performed for each metamodel, resulting
in 48 optimizations. The optimization result is given as the average among all optimal solutions.
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Engineering Optimization 9

Figure 3. Grid used in the current study.

3.4. Computational fluid dynamics method, simulation conditions and computational
domain

CFDShip-IOWA, a URANS code for ship hydrodynamics, is used as a flow solver (Huang, Carrica,
and Stern 2008). The waterjet (WJ) propulsion is considered through a simplified model. This
incorporates the effects of the WJ-induced vertical forces and pitching moments, without requiring
detailed simulations of duct flow (Kandasamy et al. 2010). Simulations are conducted in calm
water at Fr = 0.5 and Reynolds number Re = 1.019 × 107 (based on parent hull Lpp). Grids are
generated in a non-dimensional coordinate system, normalized by parent hull Lpp. The longitudinal
axis of the ship is placed on the x-axis with the bow at x = 0, stern at x = 1 and waterline at
z = 0. The computational domain extends within −0.4 ≤ x ≤ 3.6, 0 ≤ y ≤ 1.3,−0.7 ≤ z ≤ 0.66
(Figure 3).

3.5. Validation and verification method

To ensure the significance of the optimization, simulations have to be validated and the improve-
ment achieved has to be larger than numerical uncertainties. Following the factor of safety
method (Xing and Stern 2010), verification estimates the numerical uncertainty (USN ) as USN =√

U2
I + U2

G, where UI is the iterations uncertainty, and grid uncertainty UG is estimated from
grid studies. Validation uncertainty (UV ) is assessed using experimental data (D) with uncertainty

UD and numerical uncertainty USN as UV =
√

U2
D + U2

SN . If |E| = |D − S| < UV , validation is
achieved at the UV interval.

The optimized design is numerically verified by the condition (Campana et al. 2006):

|	S| > U	S =
√

U2
SN ,ori + U2

SN ,opt (16)

where	S is the improvement achieved by optimization, USN ,ori is the numerical uncertainty of
the parent hull, and USN ,opt is that of the optimized design.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
] 

at
 1

2:
57

 2
4 

M
ar

ch
 2

01
4 



10 X. Chen et al.

Table 3. Verification and validation without waterjet (WJ) model.

Verification Validation

Bare hull Triplet r R P Ul Uo Ul/ε12 Ul/Uo USN UD USN/UD UV E

Ct 1,2,3
√

2 0.622 0.686 0.083 3.986 0.064 2.093 3.987 0.210 18.986 3.954 −0.978
2,3,4 0.180 2.472 0.094 11.976 0.045 0.786 11.977 57.032 11.708 −2.264

Cf 1,2,3 1.637 MD 0.097 – 0.145 – – – – – –
2,3,4 1.494 MD 0.071 – 0.173 – – – – –

Cr 1,2,3 0.521 0.940 0.093 3.297 0.051 2.821 3.298 – – – –
2,3,4 0.166 2.592 0.123 19.737 0.034 0.622 19.737 – – –

σ 1,2,3 0.551 0.859 0.074 1.644 0.096 4.524 1.646 1.310 1.256 2.158 4.240
2,3,4 0.074 3.750 0.001 5.334 0.001 0.017 5.334 4.072 5.670 3.428

τ 1,2,3 0.531 0.913 0.008 4.231 0.004 0.185 4.231 2.910 1.454 5.103 −0.922
2,3,4 0.165 2.603 0.001 23.599 0.000 0.003 23.599 8.109 23.273 −2.153

Note: UI , UG and USN are %S1; S1 is the solution of finest grid in each triplet; UD , UV and E are %D.

Table 4. Verification with waterjet (WJ) model.

Verification
Bare hull with
WJ effect Triplet R R P UI UG UI/ε12 UI %UG USN

Ct 1,2,3
√

2 0.602 0.732 0.102 3.713 0.076 2.751 3.714
2,3,4 0.172 2.537 0.141 12.557 0.063 1.122 12.558

Cf 1,2,3 1.657 MD 0.099 – 0.132 – –
2,3,4 1.221 MD 0.095 – 0.210 – –

Cr 1,2,3 0.494 1.018 0.127 3.410 0.069 3.729 3.412
2,3,4 0.159 2.657 0.190 20.507 0.050 0.927 20.508

σ 1,2,3 0.721 0.473 0.001 4.481 0.001 0.012 4.481
2,3,4 0.069 3.859 0.001 4.265 0.000 0.012 4.265

τ 1,2,3 0.499 1.003 0.000 2.775 0.000 0.014 2.775
2,3,4 0.167 2.580 0.000 19.096 0.000 0.002 19.096

Note: UI , UG and USN are %S1, where S1 is the solution of the finest grid in each triplet.

4. Results

4.1. Validation and verification of original hull

Verification is assessed for total, frictional and residuary resistance coefficients, Ct , Cf and Cr ;
non-dimensional sinkage, σ = 	zG/Lpp; and trim, τ . Four grids, G1–4, are used with size ranging
from 1.7 to 37.3 m and associated y+ < 1, enabling two triplets with refinement ratio equal to

√
2.

Table 3 presents verification and validation studies for bare hull without WJ effects, to validate
the simulations against available experimental data, provided by CNR-INSEAN and presented
in Kandasamy et al. (2013). UI is small compared to S1, ε12 and UG. Monotonic convergence is
achieved for all variables and triplets except Cf . P < 1 for a fine triplet, whereas it is > 2 using
a coarse triplet. Triplet (1,2,3) gives average UG for Ct , Cr ,σ and τ equal to 3.29% on G1; triplet
(2,3,4) gives average UG equal to 12.66% on G2. Average validation error for Ct , σ and τ by the
finest grid (G1) is fairly small and equal to 2.05%D. Average UD is small and equal to 1.48%D;
results are validated at an average interval of 3.74%D. With increasing grid size, error decreases
for resistance and trim, whereas it increases for sinkage. Table 4 shows verification results using
a simplified WJ model. Trend is similar to that in Table 3: UI is small compared to S1, ε12 and
UG; monotonic convergence is achieved for all variables and triplets except Cf . P < 2 using a fine
triplet, whereas it is > 2 using a coarse triplet. Average UG for triplet (1,2,3) and Ct , Cr , σ and τ

is reasonable and equal to 3.59% on G1; triplet (2,3,4) gives average UG equal to 14.11% on G2.
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Engineering Optimization 11

Figure 4. Geometric variability breakdown: (a) Karhunen–Loève expansion (KLE) eigenvalues and (b) their cumulative
sum.

4.2. Karhunen–Loève expansion and preliminary sensitivity analysis along eigenvectors

Equations (4)–(7) are applied to a 20-dimensional FFD, using S = 10, 000 random geometries for
feasible sets A and B. FFD parameters control the x, y and z displacement of control points of a
9 × 5 × 5 grid, embedding the catamaran hull. Random designs are produced assuming a uniform
distribution of the FFD parameters. Herein, the mean geometry, Equation (4), corresponds to the
original shape. The computational grid for KLE of body-surface modifications has a size of 60 ×
30 nodes. Node distance stretches by a factor of 0.9 from deck to bottom, to give more emphasis to
submerged nodes. The eigenproblem, Equation (6), has a size of 5400 × 5400. The eigenvalues are
shown in Figure 4, along with the total geometric variance retained by the reduced-dimensionality
model. Feasible set A has greater geometric variance than B. Analysis of eigenvalues as per
Equation (8) and Figure 4(b) reveals that four principal geometries ψk , Equation (7), are necessary
for 95% total geometric variance of feasible set A, whereas six geometries are required for B.
Figure 5 shows the principal geometries for sets A and B.

Effects of geometric variations along the principal directions are investigated by preliminary
sensitivity analysis. Geometries are defined as:

g(xk) = (1 − xk)go + xkψk (17)

where g0 is the original geometry and xk are the design variables, bounded by −1 ≤ xk ≤ 1; five
steps are used for each xk , k = 1 . . . , n.

	[Rt/W ]% is presented in Figure 6, using G2. Changes in 	[Rt/W ] are found to be significant
in each direction. First principal geometries reveal a reduction in resistance of 7% and 5% for A
and B, respectively. Sensitivity analysis is also performed using coarser grids G3 and G4. The
average error of G3 versus G2 equals 0.61% for problem A and 0.59% for problem B. Average
errors for G4 equal 2.70% and 2.31% for A and B, respectively. Pearson’s correlation coefficient
using G2 and G3 is nearly 1 for both problems, whereas using G2 and G4 gives a correlation equal
to 0.82 and 0.81 for A and B, respectively. Accordingly, G3 is deemed appropriate for simulations
during optimization.

4.3. Optimization results

4.3.1. Surrogate-based optimization by global design of experiments

Design optimization is performed over a global window, with box constraints defined by
−1 ≤ xk ≤ 1, where xk define the hull shape as per Equation (7). Training set size is set to
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12 X. Chen et al.

Figure 5. Principal geometries given by Karhunen–Loève expansion (KLE): (a) problem A and (b) problem B.

Figure 6. 	[Rt/W ]% along principal directions using G2: (a) problem A and (b) problem B. KLE = Karhunen–Loève
expansion

80 for problem A and 120 for problem B. All metamodels and PSO combinations give close
results. The average solution and standard deviation of the design variables, for different meta-
models and deterministic PSO procedures, are shown in Table 5 and Figure 7 for problems A
and B, respectively. Standard deviations are reasonable (≤ 1.6% for problem A and ≤ 15.1% for
problem B, compared with the variables range). The average value is taken as the optimum for
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Engineering Optimization 13

Table 5. Deterministic particle swarm optimization results.

Predicted obj.
Average St. deviation (% of variable range) reduction (%)

Problem DoE x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6 Ave. St. dev.

A glob. 0.9609 0.1393 −0.5396 −0.3598 1.60 0.48 3.31 0.29 −8.40 0.24
ref. 1.1505 0.1646 −0.5850 −0.3124 0.22 0.46 0.67 0.53 −9.92 0.06

B glob. 0.0982 0.7560 −0.3711 −0.3203 0.1784 −0.0087 0.12 10.2 15.1 6.60 9.62 11.3 −6.05 0.41
ref. −0.0177 0.8941 −0.6642 −0.3503 0.1906 3.0393 0.04 0.17 0.07 0.09 0.10 0.08 −6.85 0.02

Note: DoE = design of experiments.

Figure 7. Particle swarm optimization (PSO) optimal designs: summary of (a) problem A and (b) problem B.

the current macro-iteration, namely G.OPT-A and G.OPT-B, for A and B, respectively. Opti-
mal solutions G.OPT-A and G.OPT-B are verified with URANS and the results are shown
in Table 6, giving 9.02% and 6.07% total resistance (over weight) reduction for A and B,
respectively.
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14 X. Chen et al.

Table 6. Computational fluid dynamics results for optimal designs from optimization based on global design of
experiments.

LPP ymax δ × 102 σ × 102 τ × 102 R/W × 102

Optimum Design variables S 	%S0 S 	%S0 S 	%S0 S 	%S0 S 	%S0 S 	%S0

G.OPT-A (0.9609, 0.1393, 1.0179 1.79 0.1564 −0.173 1.617 −0.010 4.190 −1.334 3.263 −17.991 5.265 −9.020
−0.5396, −0.3598)

G.OPT-B (0.0982, 0.7560, 1 0 0.1566 −0.086 1.615 −0.138 4.241 −0.133 3.452 −13.241 5.436 −6.065
−0.3711, −0.3204,
0.1784, −0.0087)

Note: S = URANS solution of optimal geometry; S0 = URANS solution of original geometry; 	 = URANS solution difference between
optimal and original geometries.

Figure 8. Particle swarm optimization (PSO) by local refinement of design of experiments: (a) optimization objective
and (b) optimal design variables value vs iterations [problem A with stochastic ensemble of radial basis functions network
(SE-RBFN)].

4.3.2. Surrogate-based optimization by local refinement of design of experiments

A local refinement is performed, over the region enclosing G.OPT-A and G.OPT-B. A local
window is defined such as −0.2 ≤ xk − xk,opt ≤ 0.2, where xk,opt represents optimal values from
the first macro-iteration. A local DoE is used, with additional 40 points for problem A and 60
for B. Accordingly, in local windows the point density increases by a factor of 2.5. Optimization
is performed over the design space defined by the Boolean union of global and local windows.
Figures 8 and 9 show the PSO convergence for problemsA and B, respectively, using the SE-RBFN
model and multiple deterministic coefficient sets, as per Table 2. Deterministic PSO procedures
have different dynamics, while converging to very similar solutions. Figure 10 shows the statistical
convergence of stochastic PSO for problem A, in terms of expected value and lower bound
of minimum (a) and associated standard deviation (b), versus the sample size. Convergence is
noisy and 10,000 optimizations are required to achieve statistically convergent results, as per
Section 3.2. The best solution is achieved after 130 optimizations and approximately equals the
deterministic optimum. Specifically, the best random solution is found to be 0.2E-3% greater than
the deterministic solution. Convergent results reveal a difference of 0.07% between the minimum
expected value and lower bound, whereas the standard deviation is 0.05%. Figure 10(c) presents
the histogram analysis of the minimum provided by 10,000 stochastic PSOs, showing that the
distribution’s lower bound approximately coincides with the deterministic minimum. Figure 8(a)
shows average and best global minimum versus the number of swarm iterations, considering
100, 1000 and 10,000 random optimizations, confirming that deterministic and stochastic PSOs
converge to the same result. Accordingly, deterministic PSO is extended to other metamodels
since it is more efficient. All metamodels and deterministic PSO combinations give close results.
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Engineering Optimization 15

Figure 9. Particle swarm optimization (PSO) by local refinement of design of experiments: (a) optimization objective
and (b) optimal design variables value vs iterations [problem B with stochastic ensemble of radial basis functions network
(SE-RBFN)].

Figure 10. Statistical analysis of random particle swarm optimization [problem A with stochastic ensemble of radial
basis functions network (SE-RBFN)]: (a) convergence of expected value and lower bound and (b) standard deviation of
optimum; (c) histogram analysis of optimum using 10,000 optimizations.

The average solution and standard deviation of the design variables are shown in Table 5 and
Figure 7 for problems A and B, respectively. Standard deviations are very small (≤ 0.67% for
problem A and ≤ 0.17% for problem B), showing beneficial effects of DoE refinement. Average
solutions give the final optimal shapes, namely L.OPT-A and L.OPT-B for A and B, respectively.

Figure 11 shows the overall convergence of the SBD optimization, where G.best and L.best
indicate the best solutions among global and local DoE points, respectively. The procedure is
found to be convergent, revealing a monotonic descent towards the optimal shapes.
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16 X. Chen et al.

Figure 11. Simulation-based design optimization convergence.

Table 7. Computational fluid dynamics results for optimal designs from optimization based on local refinement.

LPP ymax δ × 102 σ × 102 τ × 102 R/W × 102

Optimum Design variables S 	%S0 S 	%S0 S 	%S0 S 	%S0 S 	%S0 S 	%S0

L.OPT-A (1.1505, 0.1646,
−0.5850, −0.3124)

1.0214 2.14 0.1566 −0.033 1.618 0.042 4.171 −1.776 3.160 −20.387 5.230 −9.629

L.OPT-B (−0.0176, 0.8941,
−0.6642, −0.3503,
0.1906, 0.0304)

1 0 0.1569 0.134 1.611 −0.359 4.256 0.217 3.467 −12.850 5.388 −6.889

Note: S = URANS solution of optimal geometry; S0 = URANS solution of original geometry; 	 = URANS solution difference between
optimal and original geometries.

Figure 12. Optimal design for problem A and B, with comparison with original.

4.4. Performance of optimal shapes

Optimal designs are verified by URANS, as shown in Table 7. Resistance reduction equals 9.63%
and 6.89% for L.OPT-A and L.OPT-B, respectively. Displacement variations of final shapes are
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Engineering Optimization 17

Figure 13. Free surface and pressure distribution for optimal designs, with comparison with original: (a) problem A
and (b) problem B.

not significant (−0.17% for L.OPT-A and −0.09% for L.OPT-B). Lpp variation for L.OPT-A is
2.14%, corresponding to a 1.05% reduction in the actual Froude number, which equals 0.495.

L.OPT-A and L.OPTB are shown in Figure 12. Compared with the original hull, these slenderize
the entire geometry, while moving volume to the bow and the stern (especially at the inner side).
The separation distance of the catamaran is increased noticeably. Geometric modifications affect
wave elevation and pressure distribution (Figure 13). Wave fields for optimized hulls are smoother
than for the original. Elevation variation for the first wave is smaller, as is the divergent component
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18 X. Chen et al.

Figure 14. (a) Ct vs Fr; (b) resistance over weight ratio vs dimensional speed.

Figure 15. Non-dimensional sinkage and trim vs Fr.

of the disrupted Kelvin wave, reducing the wave resistance. Finally, the negative pressure area on
the stern region is smaller than in the original.

A parametric analysis is performed for speed range 0.1 ≤ Fr ≤ 0.8. Non-dimensional (Fig-
ures 14a and 15) and dimensional (Figure 14b) results are shown. Optimized hulls show significant
improvements in the high-speed range (0.4 ≤ Fr ≤ 0.8); L.OPT-A is always better than L.OPT-B.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Io

w
a 

L
ib

ra
ri

es
] 

at
 1

2:
57

 2
4 

M
ar

ch
 2

01
4 



Engineering Optimization 19

Table 8. Difference in computational fluid dynamics solutions for L.OPT vs original.

Optimum 	%S0 G1 G2 G3 Aver.

L.OPT-A Rt/W −9.953 −9.676 −9.629 −9.753
σ −0.654 −1.174 −1.776 −1.202
τ −20.478 −20.387 −20.576 −20.480

L.OPT-B Rt/W −6.979 −6.792 −6.889 −6.886
σ 0.669 0.527 0.217 0.471
τ −12.837 −12.850 −12.876 −12.854

Table 9. Verification for L.OPT-A.

Verification
L.OPT-A with
WJ effect r R P UI UG UI/ε12 UI %UG USN U	S

Ct
√

2 0.476 1.072 0.082 2.627 0.079 3.128 2.628 4.550
Cf 0.604 0.728 0.071 1.505 0.132 4.712 1.507 –
Cr 0.443 1.174 0.126 5.428 0.083 2.329 5.429 6.412
σ 0.775 0.368 0.138 10.063 0.101 1.376 10.064 11.017
τ 0.436 1.197 0.016 5.911 0.010 0.271 5.911 6.530

Note: UI , UG and USN are %S1, where S1 is the solution of the finest grid.

Table 10. Verification for L.OPT-B.

Verification
L.OPT-B with
WJ effect r R P UI UG UI/ε12 UI %UG USN U	S

Ct
√

2 0.490 1.029 0.123 2.282 0.108 5.408 2.285 4.361
Cf 0.360 1.472 0.102 1.915 0.281 5.340 1.918 –
Cr 0.524 0.934 0.166 3.371 0.090 4.922 3.375 4.799
σ 0.668 0.582 0.029 3.890 0.030 0.752 3.890 5.934
τ 0.499 1.002 0.017 2.781 0.010 0.598 2.781 3.929

Note:UI , UG and USN are %S1, where S1 is the solution of the finest grid. WJ = waterjet.

4.5. Verification of optimal shapes

L.OPT-A and L.OPT-B with WJ model are assessed using one grid triplet with the same size as
G1, G2 and G3 in Section 4.1. Table 8 shows that solutions are very close and grid convergent.
Table 9 presents the verification of L.OPT-A. UI is small compared with S1, ε12 and UG; monotonic
convergence is achieved for all variables. P is < 2. UG is reasonable and has average values for Ct ,
Cf , Cr , σ and τ equal to 5.11% on the finest grid. Table 10 shows the verification of L.OPT-B. UI

is small compared with S1, ε12 and UG. Monotonic convergence is achieved for all the variables
and P is < 2. UG is reasonable and gives average values for Ct , Cf , Cr , σ and τ equal to 2.85%
on the finest grid. Finally, U	S is equal to 4.5% for L.OPT-A and 4.4% for L.OPT-B, verifying
the condition of Equation (16).

5. Conclusions

Advances in high-fidelity shape optimization have been presented. SBD methodology encom-
passes geometric variability assessment and design-space dimensionality reduction by KLE,
multiple metamodels and multiple deterministic PSO, with the high-fidelity URANS solver. The
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20 X. Chen et al.

application pertained to hull-form design for resistance reduction of the high-speed DC, advancing
in calm water at fixed speed and free to sink and trim. Two feasible sets were assessed, considering
box constraints (A) and additional constraint on the fixed length between perpendiculars (B).

KLE analysis was performed to reduce the dimensionality of a high-dimensional FFD research
space; four dimensions were required to retain 95% of the original geometric variance for set
A, whereas six were necessary for set B. Feasible set A was found to have a larger geometric
variance than B. Multiple metamodels were trained using a DoE method with high-fidelity URANS
simulations and multiple deterministic PSOs were performed. Deterministic PSO was compared
to statistically converged stochastic PSO for problem A with the SE-RBFN metamodel, and was
confirmed to be effective. Deterministic PSO gave a minimum coincident with that provided
by stochastic PSO, using 2% of the computational resources required by the stochastic method.
Overall, 120 high-fidelity simulations were used for problem A and 180 for problem B. The final
shapes, L.OPT-A and L.OPT-B, achieved a resistance reduction of 9.63% and 6.89%, respectively.
Displacement variations were not significant and equalled −0.17% and −0.09% for L.OPT-A
and L.OPT-B, respectively. Lpp variation for L.OPT-A was 2.14%, corresponding to a 1.05%
reduction in actual Froude number, which equalled 0.495. Original and optimal shape simulation
uncertainties were studied using verification procedures, revealing U	S equal to 4.5% for L.OPT-
A and 4.4% for L.OPT-B. Parametric studies, varying the speed, revealed that L.OPT-A had
better performance than the original in a large range (0.4 ≤ Fr ≤ 0.8) and was always better than
L.OPT-B; therefore, L-OPT-A is preferred for future towing tank experiments. Compared with
earlier work (Kandasamy et al. 2013), the present methodology is deemed more effective and
efficient, since it provides an additional improvement of 6.6% for calm-water resistance at 1/10
of the computational cost.

Future developments include fully discretized DC waterjet model design with a focus on inlet
and curvature optimization (Chen et al. 2013), with validation of the final results by towing
tank experiments; and multi-objective optimization of the DC hull in a real operating scenario
with stochastic sea state, speed and heading for increased operability and expected reduction in
resistance (Diez et al. 2013). Future work will also include the development and application of
dynamic metamodels (Volpi 2013).
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