See discussions, stats, and author profiles for this publication at:

ResearchGate

Numerical optimization methods for ship

hydrodynamic design

ARTICLE /7 TRANSACTIONS - SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS - JANUARY 2010

READS
16

5 AUTHORS, INCLUDING:

’ Italian National Research Council

124 PUBLICATIONS 909 CITATIONS

SEE PROFILE

Q National Maritime Research Institute

30 PUBLICATIONS 270 CITATIONS

SEE PROFILE

Allin-text references are linked to publications on ResearchGate,

letting you access and read them immediately.

Italian National Research Council

68 PUBLICATIONS 431 CITATIONS

SEE PROFILE

Flow Inc.

36 PUBLICATIONS 175 CITATIONS

SEE PROFILE

Available from: Daniele Peri
Retrieved on: 07 March 2016


https://www.researchgate.net/publication/287528414_Numerical_optimization_methods_for_ship_hydrodynamic_design?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/287528414_Numerical_optimization_methods_for_ship_hydrodynamic_design?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Emilio_Campana?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Emilio_Campana?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Italian_National_Research_Council?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Emilio_Campana?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Daniele_Peri2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Daniele_Peri2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Italian_National_Research_Council?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Daniele_Peri2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Yusuke_Tahara2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Yusuke_Tahara2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/National_Maritime_Research_Institute?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Yusuke_Tahara2?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Manivannan_Kandasamy?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Manivannan_Kandasamy?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Manivannan_Kandasamy?enrichId=rgreq-35115f85-2683-46e0-aa46-c6de9edaedb4&enrichSource=Y292ZXJQYWdlOzI4NzUyODQxNDtBUzozMTc3MzEyNjQ0OTk3MTJAMTQ1Mjc2NDQ0NTc2OA%3D%3D&el=1_x_7

Numerical Optimization Methods for Ship
Hydrodynamic Design

Emilio F. Campana' (V), Daniele Peri! (V), Yusuke Tahara? (M), Manivannan
Kandasamy® (V), and Frederick Stern® (M)

IINSEAN — Italian Ship Model Basin, Rome, Italy
2NMRI — National Maritime Research Institute, Tokyo, Japan
SIIHR — Hydroscience & Engineering, University of Iowa, USA

The use of computational methods in design engineering is growing rapidly at all stages
of the design process, with the final goal of a substantial reduction of the cost and
time for the development of a design. Simulations and optimization algorithms can be
combined together into what is known as Simulation-Based Design (SBD) techniques.
Using these tools the designers may find the minimum of some user defined objective
functions with constraints, under the general mathematical framework of a Non-Linear
Programming problem. There are problems of course: computational complexity, noise,
robustness and accuracy of the numerical simulations, flexibility in the use of these tools;
all these issues will have to be solved before the SBD methodology can become more
widespread. In the paper, some derivative-based algorithms and methods are initially
described, including efficient ways to compute the gradient of the objective function.
Derivative-free methods — such as genetic algorithms and swarm methods—are then
described and compared on both algebraic tests and on hydrodynamic design problems.
Both local and global hydrodynamic ship design optimization problems are addressed,
defined in either a single- or a multi-objective formulation framework. Methods for
reducing the computational expense are presented. Metamodels (or surrogated mod-
els) are a rigorous framework for optimizing expensive computer simulations through
the use of inexpensive approximations of expensive analysis codes. The Variable Fi-
delity idea tries instead to alleviate the computational expense of relying exclusively on
high-fidelity models by taking advantage of well-established engineering approximation
concepts. Examples of real ship hydrodynamic design optimization cases are given, re-
porting results mostly collected through a series of projects funded by the Office of Naval
Research . Whenever possible, an experimental check of the success of the optimization
process is always advisable. Several examples of this testing activity are reported in
the paper—one is illustrated by the two pictures at the top of this page, which show
the wave pattern close to the sonar dome of an Italian Navy Anti-Submarine Warfare
corvette: left, the original design; right, the optimized one.



INTRODUCTION TO SIMULATION-
BASED DESIGN METHODS

Optimization means much more than improvement.
Nevertheless, many researchers and design engineers
still employ the terminology optimization when
what they mean in practice is that after start-
ing from a non-satisfactory configuration, they have
tried two or three other ones and chosen at the end
the best one. This is undoubtedly related to op-
timization, but in a minimal sense. In the present
paper optimization means the use of some minimiza-
tion algorithm to find the best possible solution (in
some defined sense) constrained by appropriate con-
ditions. More specifically, we will focus on optimiza-
tion methods driven by numerical simulations ap-
plied to the optimal hydrodynamic design of ships.

The growing reliance on rigorous computational
methods in engineering at all stages of the design
process seems to be an irreversible process, the fi-
nal goal being to reduce the time and cost of both
design development and standard testing activities
(which currently are very time consuming and ex-
pensive to run). By using computational methods,
candidate designs are numerically evaluated to es-
tablish their respective merits. To date, though, this
way of using numerical simulations has had a more
dramatic impact on the design process, rather than
on the design per se, which still relies greatly on the
experience of the designer and on heuristic proce-
dures i.e., on the art of engineering. Additionally,
the complexity of modern engineering systems makes
the use of heuristic methods alone increasingly chal-
lenging: “Radically new designs present a difficult
problem because designers cannot rely on historical
databases. Moreover, some design areas experience
a loss of immensely valuable design knowledge with
the retirement of designers. There is also a real-
ization that meeting a minimal set of requirements
may not suffice to ensure success of new designs.”
(Alexandrov [1]).

The above drawbacks make the wuse of
Simulation-Based Design (SBD) techniques—which
combine (i) simulations, (ii) optimization algorithms
and (iii) grid and geometry deformation methods—
much more feasible. Design performance feeds an
algorithm capable of finding the minimum of some
user-defined objective functions and constraints, un-
der the general mathematical framework of a Non-
Linear Programming problem. The design perfor-
mance is evaluated by adopting some numerical code
chosen by the user. What enables the pursuit of
SBD is the development of better numerical mod-
els of the governing disciplines, faster optimization

algorithms, and the ever increasing computational
capacity. In addition to simulation codes and opti-
mization algorithms, a third element is fundamen-
tal in the development of a SBD framework for
shape optimization—a geometry-modeling method
that provides the necessary link between the design
variables (and their variations) and the deformation
of the body shape. When an analysis tool is based on
the solution of a Partial Differential Equation (PDE)
on a volume grid surrounding a complex geometry,
developing a geometry-modeling method can be a
difficult task and require attention to detail. Flexi-
bility of the modeling method may greatly affect the
freedom of an optimizer to explore the design space.

The aim of this paper is to highlight some im-
portant factors of the many relevant issues in the
context of SBD applied to ship hydrodynamic de-
sign, rather than give a detailed review of SBD meth-
ods. Historically, in the naval hydrodynamic context
the focus was initially on minimizing total resistance,
which was evaluated by using wave resistance via the
thin-ship theory plus a term that attempted to ac-
count for the frictional resistance. The papers by
Webster & Wehausen [102] and Lin, et al. [52] seem
to be among the earliest papers dealing with the
problem of producing three-dimensional, ship forms
of low resistance. The ship geometry was approxi-
mated via finite Fourier series and the minimization
approach was based on the method of Lagrange mul-
tipliers [30]. Baba [4] proposed a method based on
the knowledge of the wave spectrum of the initial
ship design and on the successive superposition of a
thin ship which would reduce the wave-making re-
sistance. Using a thin-ship approximation and the
method of Lagrange multipliers, Hsiung [38] and
Hsiung & Shenyan [39], initially solved the prob-
lem for wave resistance and subsequently for total
resistance, using the I'TTC 1957 correlation line for-
mula to add the viscous part, which resulted in a
“hammer-head shark”form similar to those obtained
by Lin, et al. [52]. Some experiments were also car-
ried out on the optimized shapes.

Salvesen, et al. [83], Papanikolaou & An-
droulakakis [68] and Scragg, et al. [85] optimized
SWATH hull forms using the Lagrange multipliers
method. Salvesen, et al. [83] estimated the vis-
cous contribution to the resistance by using a simple
boundary-layer approach. Additionally, Papaniko-
laou & Androulakakis [68] and Scragg, et al. [85]
carried out experiments on the optimized hulls to
establish the success of the optimization procedure;
the hull form of Scragg, et al. [85] was actually built
full scale.

In the late 1980s, Pironneau [79] and Jameson
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NOMENCLATURE

B = Ship’s beam
C; = Friction resistance coefficient
C; = Total resistance coefficient
C} = Adjoint total resistance coefficient
C\, = Wave resistance coefficient
c1, co = Cognitive and social coefficients
fi = i-th Objective function
G = Green function
G M = Ship’s metacentric height
g = Acceleration of gravity
gw = € [0, 1], Particle’s inertia decrease rate
Npody = Number of panels on the ship hull surface
Nys = Number of panels on the free-surface
Nyt = Total number of panels
p = Dynamic pressure
p? = Particle’s best minimum
p? = Swarm’s best minimum
RN = real N-dimensional space
r1,72 = Random coefficients
rpg = Distance between P and @
S = Feasible solution set
S = Boundary of the computational domain
S; = Surface of the i-th panel
U = Ship’s speed
u; = Velocity components, in the z-, y-,
z-directions
v = Velocity of a point on the body relative
to Oxyz coordinate system

F, = Froude Number = U/+/gL
R, = Reynolds Number = UL /v
vl = Velocity of the i-th particle of the swarm
at the k-th step
X = Design variable vector
x, 1y, z = Coordinate system, with z aft, y to
starboard, and z upward, coordinate of a
field point
x}g = i-th particle of the swarm at the k-th step
wy, = Particle’s inertia at the k-th step
B(x) = Correction factor for Variable Fidelity
A = Ship’s displacement
dx; = Finite perturbation on the i-th design
parameter
~ = Variogram of the objective function
\* = Weights in the Kriging metamodel
A = Lagrangian multipliers of the penalty
function
¢ = Vector of the N design parameters
p = Fluid density
0(Q) = Source strength at a generic point @
® = Total Velocity potential
¢ = Perturbation potential
¢1(z) = Low Fidelity model of the objective
function
¢ (z) = High Fidelity model of the objective
function
x = Constriction factor

ACRONYMS

AM = Adjoint method
BCGA = Binary Coded Genetic Algorithm
BC-MOGA = Binary Coded Multi Objective
Genetic Algorithm
CAD = Computer Aided Design
CFD = Computational Fluid Dynamics
CG = Conjugate Gradient
DACE = Design and Analysis tool for Computer
Experiments
DDFPSO = Deterministic Derivative-Free Particle
Swarm Optimization
DOE = Design Of Experiment
FD = Finite Differences
FEM = Finite Element Method
FFD = Free Form Deformation
GA = Genetic Algorithm
GO = Global Optimization
HF = High Fidelity
IGES = Initial Graphics Exchange Specification
LF = Low Fidelity
LU = Lower Upper matrix factorization
MDO = Multidisciplinary Design Optimization
MODPSO = Multi-Objective Deterministic Particle
Swarm Optimization

MOGA = Multi Objective Genetic Algorithm
MLIM = Multidimensional Linear Interpolation
Method
MPI = Message Passing Interface
NURBS = Non-Uniform Rational B-Spline
OA = Orthogonal Array
PDE = Partial Differential Equation
PSO = Particle Swarm Optimization
RCGA = Real Coded Genetic Algorithm
RC-MOGA = Real Coded Multi Objective Genetic
Algorithm
RAO = Response Amplitude Operator
RANS = Reynolds-Averaged Navier-Stokes
SAM = Sensitivity Analysis Method
SBD = Simulation Based Design
SEM = Sensitivity Equation Method
SQP = Sequential Quadratic Programming
UDS = Uniformly Distributed Sequences
UNDX = Unimodal Normally Distributed Crossover
URANS = Unsteady Reynolds-Averaged
Navier-Stokes
VFM = Variable Fidelity Method
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[42], developed an adjoint optimization method, a
powerful tool for shape optimization using the con-
trol theory of systems constrained by partial differ-
ential equations. Early attempts to adopt this effi-
cient, gradient based optimization technique in ship
hydrodynamic optimizations, using potential flow
solvers, are reported in Huan & Huang [40], Valo-
rani, et al. [99, 100] and Ragab [80]. Lohner [55]
and Martinelli [61] presented numerical results in
ship hydrodynamic design using an adjoint formu-
lation for an Euler analysis. The adjoint approach
was extended to incompressible RANS flow by Mar-
tinelli & Cowles [60].

In developing SBD techniques there are good
reasons to adopt optimization algorithms that are
not based on gradient information, e.g., lack of ro-
bustness of the gradient information, multi-objective
formulations, unavailability of the source code used
for the analysis. Using an analysis tool based on
potential flow, Day & Doctors [19] introduced a ge-
netic algorithm to solve a global optimization prob-
lem. More complex analysis tools, more sophisti-
cated optimization algorithms (e.g. multiobjective
problems), and more complex and realistic problems,
have then been introduced by numerous authors, e.g.
[73, 78, 96, 65, 24, 106, 50, 9]*, demonstrating the
increasing consideration given to shape optimization
techniques in the design of efficient ships.

This paper will describe some algorithms and
methods for the numerical optimization of a ship’s
performance, for either local or global optimization
problems, with both single- or multi-objective func-
tions. Through a series of ONR projects, the authors
of this paper have been working on and accumu-
lating experience in the application of optimization
techniques to find solutions to complex ship hydro-
dynamic design problems [95, 96, 13].

There are many optimization algorithms avail-
able and many methods are appropriate only for
certain types of problems. Typically, optimization
problems are classified according to the mathemati-
cal characteristics of the objective function, the con-
straints and the design variables [81]. Ship hydro-
dynamic design problems are often nonlinear in the
objective function and in the constraints.

We start with a brief introduction to some
algorithms for gradient-based optimization meth-
ods for which rigorous convergence proofs exist.
These methods require the calculation of the gra-
dient and/or Hessian (or approximate Hessian) of
the objective function. These gradients are obtained
by approximating their elements by finite differ-

4This is only partial list as it would be futile to try to cover
all the recent applications of SBD to ship design in general.

ences. More efficient ways of computing the sen-
sitivity derivatives of the objective function are re-
ported (i.e., the Sensitivity Equations Method and
the Adjoint Method) and the relative performances
of these approaches for the solution of the design
optimization of a tanker are compared. Evolution-
ary algorithms are then illustrated by either genetic
or swarm methods. These approaches do not require
gradient information, which represents an advantage
due to the numerical noise typically present when
the objective function is evaluated numerically.

Statistical metamodels (surrogate models) are
presented in the next section. Metamodels are usu-
ally developed to replace complex, time-consuming
simulation programs or expensive physical experi-
ments, and to facilitate fast and accurate analysis.
Various metamodeling methods have been reported
in the literature, each having its strong and weak
points.

The third section of this paper is devoted to the
illustration of global optimization strategies to deal
with multi-objective design problems, with the focus
on reducing the number of objective function eval-
uations needed in the approximation of the Pareto
front. As with most technological problems, an op-
timal ship design is a multi-objective problem, with
the improvement of a specific aspect of the global
design usually causing the worsening of other design
aspects.

In section four of the paper, computational
models of varying fidelity are presented. Variable fi-
delity procedures may be obtained by changing the
physics, the grid density or the computational ac-
curacy. If the ability of the low-fidelity model to
guide the optimization process is monitored and its
quality is improved when necessary, this approach
may result in a substantial reduction of CPU time
without losing optimization accuracy. A number of
examples and applications are reported, either for
single or multi-objective design problems.

Next, Multidisciplinary Design Optimization
(MDO) and Robust Design are briefly introduced
in section five. MDO problems arise when the per-
formance of a large-scale, complex system like a ship
can be affected through the optimal design of sev-
eral smaller functional units or subsystems. Simul-
taneous simulations of several interacting field prob-
lems (fluid mechanics, heat transfer, elasticity, elec-
tromagnetism, etc.), may be involved in the design.
MDO can be used to properly formulate the opti-
mization of a system involving these diverse disci-
plines. Engineers increasingly rely on computer sim-
ulation to develop new products and to understand
emerging technologies. In practice, this process is
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permeated with uncertainty: manufactured prod-
ucts deviate from designed products; actual prod-
ucts must perform under a variety of operating con-
ditions. In recent years, engineers have become
increasingly concerned with managing these uncer-
tainties, and Robust Design provides tools for deal-
ing with the uncertainties. Statistical decision the-
ory, specifically the Bayes principle, provides a con-
ceptual framework for quantifying uncertainty. The
difficulty with exploiting this framework is compu-
tational, involving the numerical integration of ex-
pensive simulation outputs with respect to uncertain
quantities.

ALGORITHMS FOR SIMULATION-
BASED DESIGN

In this section we will briefly introduce some basic

mathematical frameworks in which the optimization

problems we are typically dealing with may be de-

fined and solved. For a general overview and detailed

introduction to continuous, global or multiobjective

optimization see for instance [30], [98], and [92], re-
spectively.

The basic unconstrained optimization problems

can be defined as follows®:

minimize

XeRrN

f(X),

where f : RNV — R is the objective function, con-
tinuous or not, and N is the dimension of the de-
sign variable vector X. However, typical engineer-
ing problems in design involve both geometrical (e.g.
maximum dimensions) and functional (e.g. some
design’s performance) constraints, transforming the
original, unconstrained problem into a constrained
one, that is:

minimize f(X)
subject to g(z) =0 (1)
h(z) <0,

where g(z) and h(x) are the equality and inequality
constraints, respectively. This problem, Eq. (1), can
be rewritten as:

minimize f(X)
subject to X € S,

where S € RV is the feasible solutions set, resulting
in a subset of the space R after deleting the por-
tion of RN prohibited by the constraints. Examples
on the role of the constraints on the definition of the

5The case of the minimization of all the objective func-
tions is depicted here, the maximization of the generic f being
equivalent to the minimization of —f

problem and on the selection of the proper algorithm
to find the solution are reported in Appendix A. In
the following, among the plethora of available algo-
rithms, some gradient-based and gradient-free meth-
ods are briefly introduced.

Gradient-Based, Local Optimization Meth-
ods

The interest in gradient-based, local optimiza-
tion methods, for which rigorous convergence proofs
exist (under some assumptions regarding the objec-
tive function), is due to fast convergence rates of-
fered by first- and second-order methods, based on
the knowledge of the gradient and/or Hessian (or
approximate Hessian) of the objective function. Us-
ing local information about the objective function,
this class of methods is able to detect a local mini-
mum, that is, the closest minimum with respect to
the starting point. Since the objective function is
usually computed by using a numerical tool whose
source codes are not available (or hardly modifi-
able!), these vector and matrix quantities are gen-
erally obtained by approximating their elements by
Finite Differences (FD). In the FD method, the de-
sign parameters are perturbed (around the current
design x%), one at a time by dz;, according to some
centered difference scheme; the objective function is
then computed by feeding the perturbed values of
the design parameters to the flow solver, which is
treated as a black box. By following this procedure,
an approximation of the gradient of the objective
function is obtained at each step and the number
of objective function evaluations needed is then pro-
portional to the number, N, of design parameters
(typically, 2N + 1), which may be not small. Fur-
thermore, the effect of different amplitudes of the
finite perturbations, dx;, over the accuracy of the
cost function gradient has to be investigated ([100]).

A widely investigated alternative is the use of
local models (first or second order) of the objective
function. These models are typically linear or poly-
nomial, derived on the basis of a limited number of
objective function evaluations. If the training points
are properly selected, they are also able to smooth
out the numerical noise that is inevitably produced
by the numerical solvers when evaluating a design.

This is the basis of the Sequential Quadratic
Programming (SQP) algorithms (see for example
[30]), whose main characteristic is the generation
of a sequence of second-order models, utilized to
approach the solution of the optimization problem.
That the interpolating set be well posed is one of the
crucial points of the method. In fact, the number of
coefficients of a second-order polynomial model is
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[(N +1)(1+ N/2)], so that the computational cost
is higher by a factor of about [1/2+ (N +1)/4] com-
pared with a simple FD approach. On the other
hand, if we try to use some of the previously com-
puted points (in order to reduce the number of new
objective-function computations), problems rapidly
arise as to how well posed the system is. That is, the
faster convergence is paid for by a larger effort in the
generation of the local model, and these difficulties
rapidly increase with the dimension of the problem.

Optimal Shape Design of the Sonar Dome of a Sur-
face Combatant

An example of the application of a local lin-
ear model for the computation of the first deriva-
tive of the objective function is reported in [75], and
the results are illustrated in the two pictures shown
on the first page of this paper. The problem to be
solved was that of a naval combatant in an anti-
submarine mission, with the sonar fitted in the bul-
bous bow. During the early missions of the ship, a
hydrodynamic noise problem was discovered: due to
the presence of the large sonar dome, a high, steep
bow wave was observed at the patrol speed (10-12
knots), and, depending also on the sea conditions,
wave breaking was cyclically produced causing hy-
drodynamic noise; therefore reducing the capability
of the ship to fulfil her mission. The final goal was, of
course, to avoid breaking of the bow wave, and a con-
jugate gradient algorithm was adopted for the opti-
mization of he bow and the sonar dome. The local
gradient was computed by using a local linear model
of the objective function: N 4 1 points were dis-
tributed in the design space, in a small area around
the current design, allowing simultaneous variation
of all the design variables (while FD was analyz-
ing only variations of a single design variable at a
time). Then a least-squares problem was solved ob-
taining the best local linear approximation of the
objective function. The derivatives were the angu-
lar coefficients of the resulting hyper-plane. In Fig. 1
the original dome is compared with the optimal (the
wave profile and the iso-contours of the pressure co-
efficients are also shown). The numerical analysis
of the wave pattern clearly shows an improvement
at the speed of 12 knots (Fig. 2). A reduction of
about 78% was predicted. The experimental evi-
dence of the final improvements (the two pictures
on the front page) supports the observation that a
local minimization is able to produce large effects on
the behavior of a system.

Cplimized Wave slope. 4.1305E-02

Gain .78 %

Criginal Wave slope: 0.1935

Fig. 1  Original (bottom) and optimized (top)
sonar dome. The objective function to be minimized
was the maximum slope of the bow wave.

Fig. 2 Wave pattern generated by the combat-
ant at the speed of 12 knots: original (bottom) and
optimized (top) sonar dome.

Sensitivity Analysis Methods

As already mentioned, the computation of the
gradient is always an expensive task and represents
a major limitation in the solution of realistic opti-
mization problems, particularly when the number of
design variables is not small. There exist much more
efficient ways of computing the sensitivity deriva-
tives of the objective function: however, it has to
be underlined here that all these methods require
a large manipulation of the code adopted for the
analysis, which therefore has to be available. Fur-
thermore, if a different objective function or different
constraints are required, the source code has to be
modified again.

A relatively recent approach computing the sen-
sitivity derivatives is the use of automatic differenti-
ation tools (see e.g. [32]): by using this software (see
[28, 29] for applications), if the CFD solver (adopted
for the analysis) is properly coded, derivatives are
provided at the end of the run together with the ob-
jective function value. This software requires some
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precise structures of the code in order to operate
correctly, and the source code must be rewritten to
some extent: the code preparation is not simple at
all.

An alternative approach consists in comput-
ing the derivatives of the objective function directly
from the continuous form of the PDE to be solved
by the CFD code. This methodology is normally
referred to as Sensitivity Analysis Method (SAM).
SAM exploits the existence of a set of partial dif-
ferential equations describing the flow dynamics to
predict the sensitivity of the flow field to perturba-
tions of the design parameters. To achieve this goal
SAM only requires one flow solution evaluated at
the unperturbed design plus a number of additional
linear system solutions. This allows a drastic reduc-
tion in the number of flow solutions: from 2N to just
1, plus the solution of the additional linear systems.
These approaches become more and more profitable
as the number of design parameters increases.

In the SAM framework, two alternative meth-
ods exist: the Sensitivity Equations Method (SEM)
(a direct formulation of the sensitivity equations)
and the Adjoint Method (AM). The former [33] in-
volves differentiating the state equations and using
the chain rule to find sensitivity derivatives of the
cost function: this method requires only one flow so-
lution and the solution of N sets of linear sensitivity
equations. The latter [79, 42] resorts to a formula-
tion inherited from the control theory. It requires
only one flow solution and the solution of one set of
linear adjoint equations.

Sensitivity and Adjoint Methods: Formulations and
a Computational Example

A general introduction to these formulations
can be found in Lion [54], Pironneau [79] and Jame-
son & Reuther [42]. We will briefly describe here
only some of the basic elements based on the au-
thors’ work [99, 100], while other results on numeri-
cal ship hydrodynamics can be found in [100, 80, 61,
65]. In [100], SEM and AM methods are compared
with the FD approach for the shape optimization of
a tanker aimed at the reduction of total resistance
at a design speed. A free-surface linear panel solver
[5] is adopted to compute the ship’s wave resistance,
whereas the friction resistance is obtained via the
ITTC formula. The mathematical formulation of
the problem is based on the hypothesis that the fluid
is inviscid and incompressible, the flow irrotational
and the pressure constant on the free surface. The
fluid velocity can then be written as the gradient of
a velocity potential, ®, that can be decomposed into
the uniform stream, Uz, contribution and a pertur-

bation potential, ¢, to yield
S =Uzx+Uep.

Under this assumptions, the perturbation potential
@ at each point P of the semi-infinite 3D space,
bounded by the ship-hull surface and the calm-water
free surface, can be found by the integral relation:
oP) = [ o@cr-@us = [ Das, )
S s TPQ
where 0(Q) is the source strength at an arbitrary
point @ taken on the boundary of the integration
domain; S is the sum of the ship-hull surface and
free-surface areas. The Green function G specific to
the flow problem of interest is the Rankine singular-

ity defined as

GrP-Q=—,
TPQ
where rpg is the Euclidean norm (i.e., the distance)
between point P and . As usual, the boundary
conditions are adopted to find the source strengths:
a Neumann-type boundary condition at the ship-hull
surface:

(3)

and a linearized boundary condition on the calm-
water surface:

Ng + @z =0

Pz
Fr? ()
Equations (3) and (4) are in non-dimensional form;
the reference values selected to make Eqgs. (3) and (4)
non-dimensional are the ship speed U and the ship
length L. The Froude number is defined as Fr =
U/+/gL, where g is the acceleration of gravity. The
subscripts zx and z denote partial derivatives evalu-
ated along the x- and z-axis of the Cartesian frame
of reference, which moves at constant speed U, along
with the ship; the z-axis lies parallel to the direction
of the ship travel.

Discretizing the potential perturbation ¢ (in or-
der to be able to solve the problem numerically) de-
fined by Eq. (2) yields

Ntot Ntot

1
p(P) = Z/ 0;GijdS; = Z/ o;—dS;,
j=1"75; j=175j Tij

where i = 1, N;,;. The boundary S is approximated®
by Nyt panels, whose finite surface area is Sj;; F; is
the point at the panel centroid; N¢,; comprises Nyody
panels approximating the ship-hull surface plus N¢
panels approximating the free surface.

Soxz + - 0.

60nly the region of the free surface closest to the the ship
is discretized
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The total resistance coefficient C; is defined as:
Ot(o'j7€) = Cw(a'jag) +Of7 (5)
where the wave resistance coefficient C,, is defined
as
Nyody

Cu(0;,€) = % Z KFZ;Q —pz‘) (na:)iASi:| ;

1=

and the friction drag coefficient C'y is estimated with
the ITTC formula [41]:

= 0.075
a (10g10(R€) - 2)2.

The variable £ is the vector of the N design param-
eters used to parameterize the hull shape.

The SEM involves differentiating the cost func-
tion C}, Eq. (5), with respect to the design parame-
ters & to obtain N relations

N,
dCy | OCH| aC
—_— = E —_— ; —_— k=1,N,
Ak j=1 aaj § " Ok o

where &f is the sensitivity of the source strength at
the j-th panel with respect to perturbations of the
k-th design parameter defined as:
Af = % J=1,Niot

The AM formulation can be derived as fol-
lows. An adjoint cost function, C}, is introduced by
adding to the original cost function, C;, a number
of penalty function terms which constrain the opti-
mum state to satisfy the set of PDE which describe
the flow evolution:

k=1,N.

Niot

Cr=Ci+ Y Nw(o,9),

=1

where the A! terms are the Lagrangian multipliers of
the penalty functions and w; represent the discrete
forms of Egs. (3) and (4). By definition, one finds
that

dcy _ dCy
d&r,  dég

If the flow equations are satisfied, the following im-
plications hold:

=1

. dwy , . dcy  dCy
w(65,§) =0= 7t (6,§) =0= i dE
Details about the explicit form of terms like do; /0
and the implications of such an approach are re-
ported in [100] as well as numerical evidence of the
improvements obtained by SEM and AM with re-

spect to standard FD.

In Figs. 3-6 a summary of the results is reported
(for all the details see [100]). The optimization ex-
ercise has been carried out for a tanker hull form
of 19,300 tons (Fig. 3), advancing in calm water at
a speed of 16 knots (at even keel). The problem is
solved at a single design speed, but numerical and
experimental tests have been performed for several
speeds, ranging from 12 to 18 knots. Due to the
inviscid nature of the potential flow solver used in
the computation, the optimized region has been re-
stricted to the forward part of the ship (the first
15% of the hull, see Fig. 4). Only the y-coordinate
of the hull was allowed to vary, while the centerline
profile was kept fixed. Different gradient methods
where tested (steepest descent, conjugate gradient,
sequential quadratic programming). The main find-
ings from the comparison of FD, AM, and SEM were
the following:

e The comparative analysis of the CPU time re-
quirements of the three methods have shown
that SEM and AM deliver almost identical com-
putational speeds, which was about 1.6 times
faster than the FD method (they converge in
the same number of cycles; see Fig. 5). The
main reasons allowing SEM and AM to perform
better than FD are the reduction of the num-
ber of flow solutions needed to compute the cost
function gradient and the possibility of using
the same LU factored matrix both for the flow
solver and the SEM or AM equations;

e The SEM is, in principle, more efficient than
the standard FD method, mainly because only
one flow solution is required to compute the
sensitivity derivatives instead of the N 4+ 1 (or
2N + 1 for second-order accuracy), flow solu-
tions needed by the FD method. However, a
high efficiency can be actually achieved only if
the cost of computing the coefficients of the sen-
sitivity equations is computationally small with
respect to the cost of one flow solution. This
balance is directly related to the specific set of
PDE’s involved in the optimization procedure.

e All three methods tested—FD, SEM and AM—
found the same optimal shape, Fig. 4, thus sug-
gesting that the good correlation between the
cost function gradients produced by the three
methods holds everywhere within the admissi-
ble domain of the optimization process, even
when the design point approaches the domain
boundaries set by the design constraints.

We underline here that both the SAM and FD ap-
proaches are methods to compute, with different
computational complexity, the gradient of the ob-
jective function. The gradient information has to be
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included in some other method, such as Steepest De-
scent, Conjugate-Gradient (CG), and SQP (see e.g.
[30]). In the conjugate-gradient method the search
direction p at a step k is given by:

Pk = —Gk + BrPr—1,

where g, is the gradient of f at step k and S is a
scalar quantity to be determined on the basis of the
value of the gradient of the objective function and of
the line search direction at the previous and current
step. Several methods have been tested to compute
Bk (e.g. Fletcher-Reeves, Polak-Ribire, Hestenses-
Stifel [30]). The simple Steepest-Descent approxi-
mation is obtained for 8 = 0. In [76], the problem
is tackled numerically by adopting the three above
mentioned gradient-based techniques (i.e. Steepest
Descent, CG and SQP), wherein the gradient com-
ponents are estimated by FD, and different sets of
geometrical constraints are imposed. A typical selec-
tion of geometrical constraints includes local bounds
on the width of the transverse section of the hull,
on the total displacement, plus several equality con-
straints (e.g. the fixed length, beam and draft of
a ship hull). Two optimal hull geometries, ob-
tained with different optimization algorithms (CG
and SQP), have also been tested experimentally to
assess the success of the optimization procedure.
Their performance has been compared against that
of the original design through an experimental pro-
gram. Results of this comparison, reported in [76],
confirmed the validity of the approach. A reduction
of the total resistance (~ 3%) at the design speed
was observed on both the tested models as a conse-
quence of the reduced height of the free surface wave
pattern (see Fig. 6).

Fig. 3 SEM vs. FD methods. A perspective view
of the discretized hull used as test case.

Optimized hull (FD method, 3x3 parameters)

Original hull

Optimized hull (SA method, 3x3 parameters)

Fig. 4 SEM vs. FD methods. Initial and opti-
mal bulb shapes, hull surface parameterized by using
9 design parameters, optimization processes carried
out by using the FD and the Analysis Sensitivity
(SEM and AM) methods. SEM and AM give the
same solution but with different computational time.

Objective Function

E 1 1 1 1
0.0047 £ P
Iteration #

Fig. 5 Convergence histories of the optimization
process as obtained by using the FD method, SEM
and AM (fine mesh resolution).

Derivative-Free, Global Optimization Meth-
ods

The development of an SBD framework which
combines costly analysis tools and global optimiza-
tion algorithms may appear to be a paradox, but
good reasons exist to pursue this line of research.
Numerical evaluations of the objective function al-
most always display noise and non-smoothness (and
in general, unavailability of derivatives). If the de-
scent direction is not correctly computed, local op-
timizers might be trapped by spurious, local min-
ima. Quoting Kolda, Lewis & Torczon [49]: “It
is widely appreciated in the simulation-based opti-
mization community that the results of complex cal-
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Fig. 6 Experimental results on the two optimized
models tested (CG and SQP). The experimental un-
certainty, also reported in the picture, is significantly
smaller than the measured reduction of total resis-
tance.

culations ...may fail to have the level of precision
necessary for a reliable finite-difference approxima-
tion to the gradient, ruling out an off-the-shelf finite-
difference quasi-Newton code.” There are two more
good reasons for going to global optimization meth-
ods: (i) the feasible design spaces of ship design opti-
mization problems are very often non-convexr due to
the presence of nonlinear geometrical and functional
constraints that have to be enforced to prevent un-
realistic results and provide a meaningful design; (ii)
when the margin for design improvements is narrow-
ing, the probability that further improvements could
come from local optimization methods is small. Of
course, one needs to keep in mind that in non-convex
problems such as those in which we are interested,
there exists no proof of convergence to a global op-
timum. The goal is to develop methods which have
great effectiveness and efficiency in terms of number
of objective function evaluations. To this aim, we
draw the attention to the Particle Swarm Optimiza-
tion (PSO) [10] method and to the Real Coded Ge-
netic Algorithm (RCGA) approach. The PSO method
will be described in the next section (together with
some applications reported in [13]), while the de-
scription of the RCGA approach will be postponed to
the multi-objective problems section.

A Particle Swarm Optimization Algorithm: DDFPSO

The Particle Swarm Optimization (PS0) algo-
rithm is a recent addition to the list of global search
methods. Since it was originally introduced, [47], the
PSO algorithm has been studied by many authors (cf.
[46, 71, 87, 88]). In the following, the standard PSO
method is described, and a new version is introduced
and tested.

The swarm strategy simulates the social behav-
ior of a set of individuals (particles) which share in-
formation among themselves while exploring the de-
sign variables’ space. In the basic PSO method each
particle has its own memory to remember the best
places that it has visited, whereas the swarm has
a global memory to remember the best place ever
visited. Moreover, each particle has an adaptable
velocity to move itself across the design space. Ac-
cording to these principles, each particle investigates
the search space analyzing its own travel experience
and that of the other members of the swarm.

The original PSO algorithm is composed of the
following four steps:

Step 0. (Initialization): Distribute a set of parti-
cles ) inside the design space with random
distribution and random initial velocities. Set
k=1.

Step 1. (Compute velocity): Calculate a velocity
vector v’ for each particle, using the parti-
cle’s memory and the knowledge gained by the
swarm according to:

v =X [wkvliq +cim (pi - miﬂ)
+cara (pifl —zj_q)]

where x is a constriction factor, w is called in-

ertia weight, ¢, and cy are positive constants, rq

and ro are random numbers equally distributed
between 0 and 1, p* is the best position found by
particle, i, and pz_l is the best position found

by the swarm up to iteration k — 1.

Step 2. (Update position): Update the position of
each particle, %, using the velocity vector and
previous position

(6)

z), = Th_q + v (7)
Step 3. (Check convergence) Set k =k + 1. Go to
Step 1 and repeat until convergence occurs.
Literature reports that fine tuning of the pa-
rameters in Eq. (6) is crucial for the optimization
process, and that the final solution and the calcula-
tion time are strictly linked to the parameters set-
ting. The inertia weight w regulates the trade-off be-
tween the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A large inertia
weight facilitates global exploration (searching new
areas), while a small one facilitates local exploration.
Experimental results indicate that it is better to ini-
tially set the inertia to a large value, in order to
promote global exploration of the design-variables’
space and gradually decrease it to get a more refined
solution [101]. For these reasons, an initial value for
w is set and the decrease rate is calculated by

Wk = Wk—1 Guw
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where wy is the new value for the inertia weight,
wy—1 is the previous one and g,, is a constant chosen
between 0 and 1. In [101] it is suggested that one
use 0.35 < w < 1.4, and g, = 0.975.

While the inertia w is employed to control the
impact of the previous history of velocities on the
current one, x offers to the user the chance to se-
lect the search resolution. Quantitatively, if box
constraints (e.g. #! < x; < z¥, where z! (z%) is
the lower (upper) limit of the design variable z;)
are given, x takes a value equal to a fraction of the
characteristic dimension of the box.

The constants ¢; and co are called the cognitive
and social parameters, respectively. The cognitive
parameter indicates how much confidence the par-
ticle has in itself, while the social parameter indi-
cates how much confidence it has in the swarm. In
the basic PSO algorithm [47], the authors propose
c1 = ¢ = 2, so that the mean of stochastic multipli-
ers of Eq. (6) is 1. In [101] different values for the
two coefficients are used. In particular, ¢c; = 1.5 and
co = 2.5 work well in their examples.

In [10], Campana, et al. carried out a more rig-
orous analysis. In this paper a generalized PSO iter-
ation is described by means of a dynamic linear sys-
tem whose properties are analyzed. The influence
of the particles’ starting points and the use of de-
terministic or stochastic parameters are investigated
and some partial convergence results are given. In
particular, the PSO parameters are selected by im-
posing the constraint that the particles’ trajectories
are confined in a suitable compact set.

Recently, Campana, et al. [11] developed an en-
hanced version of the basic PSO, named Determin-
istic Derivative-Free Particle Swarm Optimization
(DDFPS0). The main modifications are:

(i) Initialization of the swarm: The use of GO al-
gorithms based on expensive analysis tools im-
poses a substantial reduction of the particles’
number. Instead of using a random distribu-
tion, a deterministic one is proposed. In partic-
ular, at Step 0 the initial swarm is built with
one particle at the center of each face of the
n-dimensional hyper-cube which represents the
design space. As a consequence, the total num-
ber of particles is 2n. Moreover, the initial ve-
locity vector, defined in Eq. (6), is set equal
to 0.

Boundary search phase: According to Egs. (6)
and (7) each particle is attracted by the oth-
ers. As a consequence, in an example with two
design parameters, the particles can not escape
from the dashed region indicated in Fig. 7 unless
the inertia term is sufficiently strong, i.e., the

(iii)

(iv)

corners of the design space cannot be reached
by any particle of the swarm. In order to force
the search along the boundaries of the design
space, a threshold value is introduced that lim-
its the d-component of the particle’s speed or-
thogonal to the face where the particle has been
initially placed:

d d |

‘xmax ~ Tmin

o] < . , g <10
g

This threshold value is initially set as a frac-
tion of the box’s dimension in the d-th direc-
tion. This limit is progressively relaxed during
the iterations. By applying this normal speed
limiter it is possible to force the exploration of
the corners of the design space (as reported in
the example shown in Fig. 7). The dashed (in-
ner) region of the feasible space is obtained by
connecting the initial positions of the particles.
Without the normal speed limiter (Fig. 7a), par-
ticles are strongly attracted to each other and
tend to be confined inside the dashed region,
hence failing to locate the global optimum. The
use of the normal speed limiter (Fig. 7b) allows
the particles to explore the design space near
the boundary and to find the global optimum.

Suppression of random coefficients: In the new
version PSO is modified according to a deter-
ministic flavor. In Eq. (6), we decide to fix the
parameters r; and r9 equal to 1, thus eliminat-
ing the random factor introduced by these two
coefficients. In this way we transform a pure
stochastic method into a deterministic one. The
motivation stems from the use of PSO in combi-
nation with CPU time-intensive numerical sim-
ulations used to obtain both objective func-
tion information and constraints’ information.
A stochastic approach would require repeated
runs which might require simply too much com-
puting time for real-life industrial applications.
Particles with violated constraints: The original
PSO0 algorithm is defined only for unconstrained
optimization problems. Because freedom in the
design of a ship is always limited by a large num-
ber of constraints, we transformed the method
by setting the weighting term of particles with
violated constraints equal to 0. As a conse-
quence, Eq. (6) is replaced by

Ulif =X [Cl (Pi - 952—1)
+ c2 (PZ—l - 932—1)] .

In most cases the new velocity vector will im-
mediately point back to the feasible region in
one step. This feature of the DDFPSO algorithm
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is particularly useful in optimization problems
with non-convex feasible design spaces.

Convergence criterion for the global search
phase: In the original algorithm there was no
stopping criterion. For real applications, how-
ever, the maximum number of iterations is typ-
ically fixed, driven by elapsed-time constraints.
An heuristic convergence criterion for the PSO
phase is therefore introduced to switch from the
global to the local search phase. For the con-
vergence of the global phase we focus on the
identification of all the particles which fall into
the same basin of attraction. At each iteration,
k, all the particles of the swarm are analyzed;
if a descent trend Eq. (8) is shown for a given
number of consecutive steps, the ith particle is
marked as attracted by a basin.

[f(z}) = f(ah_y)]
X [f(‘rifl) - f(x;cﬁ)] >0 (8)
fa}) = flah_y) <0

Then the distance among the attracted parti-
cles is computed. These particles are assumed
to be in the same basin if the maximum distance
among them is a small fraction of the maximum
initial distance. An average radius of the dis-
tance among the attracted particles is computed
and the center of the basin is estimated. This
radius is finally used to check the remaining,
non-attracted, particles of the swarm. Given
their distances from the center of the basin and
the remaining steps before the maximum itera-
tion is reached, if their current speed is already
too slow to bring them back to the basin where
the current optimum is located, they are aban-
doned. When all the swarm particles are in the
basin or abandoned, the global search phase is
terminated.

Local search phase: It has been observed that
PSO is generally fast in the identification of the
attraction basins but it is quite slow to con-
verge. The strategy adopted here is to use a
two-phase, global-local, approach. Thus, we in-
troduce the following additional step to perform
a local refinement of the solution:

Step 4. (Local search): Starting from the
point with the lowest objective function
value, we perform a local minimization
with the derivative-free line-search method
DF proposed in [56]. However, any lo-
cal search method may be applied in this
phase.

Global Minimum

bl

Fig. 7 The path of the swarm particles for the
n = 2 Griewank test function, with and without the
speed limiter introduced in DDFPSO.

An Example: Hull-Form Optimization for Seakeep-
ing with DDFPSO

The problem selected for showing the capabili-
ties of the Swarm global approach is the optimiza-
tion of the peak of the Response Amplitude Oper-
ator (RAO) for the heave motion when a contain-
ership (S175) is advancing at a constant speed of
16 knots in head seas. In particular, the minimum
of the response is searched for non-dimensional fre-
quencies higher than 0.4. More details can be found
in [11].

The seakeeping performances of the ship are
numerically evaluated with a potential flow solver
based on strip theory. The hull-shape parametriza-
tion is performed via a Béziér patch that is superim-
posed on the original hull shape [76]. The six patch-
control points (N = 6) are used as design variables
to modify the hull shape: = = (1, 2o,...,26)".

Some geometrical constraints are imposed dur-
ing the optimization process. In particular we define
a range of variation for the displacement, A, and for
the beam, B, as:

2398 t < A(z) < 2460 9)
25 m < B(z) < 26 m. (10)

Furthermore, in order to avoid unrealizable geome-
tries, box constraints are imposed on the design vari-
ables, x;:

—20.0<2; <200 i=1,...,6.

Finally, a constraint on the metacentric height GM
is also imposed. The ensemble of these constraints
Egs. (9) and (10) form a nonlinear constraint and
therefore create a nonconvex, feasible, design space.
The DDFPSO algorithm is able to deal with this prob-
lem. In this example DDFPSO is compared with ex-
isting numerical optimization codes, in particular
DIRECT [45] and FILLDIR, for which the reader is
referred to [11].
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Table 1 Comparative results for the RAO’s heave
motion peak optimization (maxnf = 100 N).
maxnf = 100 NV
Algorithm || fiin \ improv.(%) \ nf
FILLDIR 0.8796 33.36 320
DDFPSO 0.8648 34.48 600
DIRECT 0.8636 34.57 601
Table 2  As in Table 1 but with maxnf = 1000 N.
maxnf = 1000 N
Algorithm || fmin [ improv.(%) | nf
FILLDIR 0.8572 35.06 982
DDFPSO 0.8645 34.50 714
DIRECT 0.8627 34.64 2345

The maximum number of objective function
evaluations (maxnf) is adopted as stopping criterion.
Two runs have been performed for each algorithm,
one run with maxnf equal to 100 N and the other
run with maxnf equal to 1000 N. Values of the ob-
jective function, improvements with respect to the
initial objective function value, and total number of
function evaluations required by each method are re-
ported in Tables 1 and 2. All the algorithms show
good results, very close to each other.

In Fig. 8 we provide the RAOs associated with
the various final hull forms obtained in the 100 NV
case. All the RAQ’s are significantly better than
the starting one, and the heave motion peak of the
RAO has been damped. In Fig. 9 the original and
optimized geometries are compared and the values
of the design parameters are shown too.

Fig. 8 Comparison of the heave motion RAOs of
the original and optimized hulls (maxnf = 100 N);
the objective function minimum has been searched
for non-dimensional frequencies higher than 0.4.
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Fig. 9 S175 hull shape and optimum design vari-
ables comparison (maxnf = 100 V).

SELECTION OF DESIGN PARAMETERS

The choice of the shape parametrization technique
has a large impact on the practical implementation
and often also on the success of the optimization pro-
cess. There exist a large number of approaches, from
simple morphing techniques, to CAD systems, and
to Free Form Deformation (FFD) techniques. As a
general statement we might say that, in principle,
the number (and the type) of parameters implic-
itly defines the diversity of the admissible shapes:
since the larger the variety of potential designs, the
larger the improvements we can hope to find (start-
ing from the original design), the importance of a
proper choice of the design parameters is evident.
First of all, we need to reproduce an initial de-
sign, because most of the time one has to (or wants
to) start from a known shape: all the details of the
original hull form have to be described correctly.
This represents a problem with dedicated paramet-
ric CAD systems: quoting Samareh [84]: “To pa-
rameterize an existing model is still a challenging
task for current CAD systems ... and the models
created are not always good enough for automatic
grid generation tools. Designers may believe their
models are complete and accurate, but unseen im-
perfections (e.g., gaps, unwanted wiggles, free edges,
slivers, and transition cracks) often cause problems
in gridding for CSM” and CFD.” Another problem
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is that there is no standard interface for data ac-
cess across CAD systems. Furthermore, the number
of resulting parameters may not be at all small, and
they still cannot provide analytical sensitivity analy-
sis. For a more detailed discussion about these topic
refer to [84] and the references cited therein. The
same problem arises if we try to use directly the set
of NURBS present inside some of the standard for-
mats for the description of a 3D surface, like the
IGES format. Also in this case, the number of con-
trol points describing the hull surface may be large,
sometime causing the generation of wavy, unrealis-
tic, shapes.

Another issue that has to be addressed is that
the computational grid adopted in the analysis must
be regenerated or deformed each time there is the
need to evaluate a new perturbed design, and this
operation has to be performed in background, with-
out any guarantee about the quality of the new
mesh. When this has to be done in conjunction
with RANS solvers, the regridding issues may be-
come extremely relevant to the performance and the
final result of the optimization. Several techniques
available for the field grid movements are summa-
rized in [84].

Apart from some extreme hull shape deforma-
tions, the experience of the authors with the de-
formation propagation applied directly onto a high-
quality (block structured) mesh is that it is possible
to preserve the good characteristics for the deformed
mesh, provided that attention is paid to moving grid
points in the boundary layer region and close to high
curvature regions. Deformation (more than regener-
ation) of the computational grid represents a good
approach to the problem: (1) one doesn’t need to re-
generate the whole volume grid each time the hull
shape is perturbed, (2) the initial hull shape is pre-
served and (3) one can deform some part of the hull
with a prescribed degree of continuity. As a coun-
terbalance there is the difficulty in translating the
optimal shape into a CAD system: this operation
requires the solution of a problem of reverse engi-
neering, in which the grid has to be fitted by a num-
ber of NURBS to be imported into the CAD system.
The use of multi-block quadrilateral structured grid
for the hull surface is of great help in this phase,
and negligible discrepancies have been observed at
the end of the shape translation.

In Peri, et al. [76], Campana, et al. [13] and
Tahara, et al. [95] some alternatives have been ex-
plored for hull shape parametrization (details are re-
ported in Appendix B). The first alternative is the
superposition of a polynomial surface, controlled by
a limited number of parameters, on the original hull

shape (or a portion of it). This approach is docu-
mented in [76], where a Béziér surface is adopted.
Proper fairing conditions are applied in order to
guarantee fairness of the resulting surfaces, so to
avoid discontinuities in the optimal hull surface. The
value of the Béziér surface is computed at each grid
point and added along a selected direction. More
than a single surface (patch) can be adopted in order
to allow for three directional movements (Fig. 10).

Fig. 10
DTMB Model 5415 by means of Béziér patches.
Each patch controls the movement in one coordinate
direction.

Parametrization of the bow region of

A second and more complex approach is based
on the free-form deformation of a portion of the
space containing the hull (or a part of it). The FFD
approach [86] has been adopted in [13] and other
applications. The idea is to define a parallelepiped
including the part of the ship hull we intend to de-
form (Fig. 11). This parallelepiped is subdivided
into a number of regular intervals, and the nodes of
this grid are the potential control points. By mov-
ing one or more of these control points, we are de-
forming the parallelepiped, and therefore the shape
inside the volume too. The number and direction
of the subdivisions guarantee continuity and variety
for the deformed shape. Some of the control points
can also be linked together, allowing complex rela-
tive movements: the flexibility of this approach rep-
resents its major advantage. Two more approaches,
namely (i) morphing and (ii) CAD based approach,
are briefly summarized Appendix B.

METAMODELS

In the past few years, there has been a growing in-
terest in the use of metamodel methods for numer-
ical design optimization. These methods fit sim-
ple functions, such as low-order polynomials, to a
set of known (and computationally or experimen-
tally expensive) data. All numerical optimization
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Fig. 11  Parametrization of one hull (the ONR
Topside Series tumble-home hull form [8]) by means
of the FFD approach. Each vertex of the grid is a po-
tential design variable. To reduce the total number
of design variables, different vertices can be linked
together along different coordinate directions. This
case shows a 6 design variable example. top (bot-
tom): two (four) groups of control points allow the
deformation along the longitudinal (transverse) di-
rection.

algorithms are based on combining information, i.e.
supplying the vector of design variables, X, and
receiving the vector of responses, F(X), via some
performance analysis methods (e.g. CFD simula-
tions). When these simulations are computationally
expensive—if they are inexpensive, any brute-force
search technique will do—their use in exploring large
design spaces can be prohibitive. One possible ap-
proach to deal with this problem is to construct a
metamodel, that is an approximated model (com-
putationally inexpensive) based on a limited num-
ber of trial solutions. The term metamodel liter-
ally means model of a model. Metamodels are in-
tended to describe relationships between design per-

formances and adopted variables, with the follow-
ing advantages: (i) they yield insight into the rela-
tionship between responses, F', and design variables,
X; (ii) they provide fast analysis tools for design-
space exploration since cheap-to-run approximations
are used; and (iii) they facilitate the integration of
discipline-dependent analysis codes into the overall
design strategy. Furthermore, they can be easily
parallelized with almost theoretical speed-up.

The three fundamental steps in using metamod-
elling are: 1) to choose a distribution of trial points
in the design space for generating data; 2) to choose
a model to represent the data and fit the model to
the sampled points, and 3) to validate the model.
We will briefly describe here how to select the trial
points [Design Of Experiments (DOE)] and how to
use different types of metamodels.

There are various types of metamodels. In [44],
Jones reviews the most important developments: re-
sponse surface models [63]; regression polynomials;
Kriging [59]; neural networks [34]; etc. (Also see
[43] & [89] for a comparative evaluation of various
types of metamodels.) In this paper the focus is on
Kriging, which will be introduced in the following
subsection.

A more recent approach is to build ensembles
of metamodels with the available data ([53], [31],
[72]). The idea is to extract as much information as
possible from the data required for developing the
metamodel. These ensembles of metamodels can be
developed without significant expense compared to
the cost of acquiring data, and they have proven ef-
fective in improving the predictions. In particular,
[72] shows how the use of two metamodels provides
information for the selection of trial solutions, pro-
ducing in turn a more efficient computational base
for the metamodels.

Design of Experiments (DOE)

The basic element needed by a metamodel to
produce an estimate of the function is a set of known
values at given positions. These known values can
be split into two different sets: the training set and
the validation set. The training set is used to tune
the model, usually minimizing the error of the model
on these points, while the validation set is used for
validation, that is, for checking the prediction on
points unknown to the metamodel.

The selection of training points is crucial for
the quality of the model. Uniformly Distributed Se-
quences (UDS, [51]) are the most preferable for the
selection of the training set. Two different strate-
gies have been investigated for this purpose: LP,
nets [92] and Orthogonal Arrays (OA) [35]. Once
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the level of description for each design variable is
fixed, OA provides an uniform orthogonal distribu-
tion of points, minimizing the number of training
points while still preserving the density of the sam-
pling. The LP, net belongs to the class of UDS too;
this distribution guarantees a high degree of unifor-
mity. Unfortunately, it is available only for a limited
number of design variables less than or equal to 20.

Metamodelling Techniques: Kriging

The Kriging method was originally developed
for use in the computer science and engineering fields
as a Design and Analysis tool for Computer Exper-
iments (DACE) modeling by Sacks, et al. [82]. Krig-
ing methods have been used to model the response
of many engineering systems. Martin and Simpson
conducted a study on using Kriging models to ap-
proximate deterministic computer models and dis-
cussed the applicability of various Kriging variants
[59], whereas an interesting recent application of
Kriging in a surrogate management framework is re-
ported in [58].

Kriging is an interpolation method that pro-
vides an estimate of the system response by a
weighted sum of a limited set of the known values,

fz) = Z Aif (),

under the condition that
N

d =1

i=1

By the definition of interpolation and by con-
struction, Kriging preserves the response value on
the training points. The optimal weights are ob-
tained by applying some spatial correlation consid-
erations among the training points coming from the
DOE. Kriging is based on spatial correlation be-
tween locations. The underlying idea is that any
sample is spatially correlated with the others, so that
the weights, A;, can be derived once the spatial cor-
relation law is known. In order to do that, we define
the variogram for the objective function as

Yz +h,x) = E|f(z+h) - f(z)],

where E|f| is the expected value of f. Once the
variogram is known, we can express the weighting
coefficients by writing an equation for each training
point plus one for a Lagrangian multiplier in the
form,

N

Z)\iV(xivxj)+M:’Y(xj7x0)v j:17"'aNa
=1

where p is the Lagrange multiplier. The last equa-
tion is the cardinality condition:

N
> =1
=1

In this way, the weights, \;, are calculated so that
the response in zg is unbiased and optimal, that is,
with a minimum squared error of estimation. The
only missing element is the variogram which can be
estimated by fitting the known values on the training
points with some simple model (e.g., linear). The
error, o, associated with the estimate is expressed
by the equation,

N
or(x0) = Y Ny, o) + -
=1

A number of different options are available.
Kriging can be derived by using a limited number of
training points (e.g., the closest points to the com-
putational point), and by using a large number of
variograms. As a consequence, a large number of
different types of Kriging can be found in the lit-
erature. In global optimization problems (cf. [74]),
one can use the full training set in order to produce
a global approximation. The variogram is assumed
to be a linear function of the distance between two
points. The coefficients are computed by fitting the
experimental variogram, computed as

N B Zi,jeN(h) |fi - fj|2

where N (h) is the set of points such that |z; —z;|* =
h with a certain tolerance on h.

The advantage of Kriging over neural networks
is the time needed for training. Neural networks
typically require an optimization of the parameters,
which can take a very long time if the number of
design variables and the training set are large. In
contrast Kriging only requires the LU decomposition
of a single matrix (see e.g. [36]), whose dimensions
are equal to the number of training points plus one,
independent of the space dimension, the other oper-
ations are essentially inexpensive. The weak point
of Kriging is that noisy data may sometimes lead to
confusing predictions, whereas neural networks are
able to naturally smooth out the roughness of the
objective function. A desingularization of the dis-
tance calculation in the form,

hij = |£IJZ —LCj| +€7

with € a small positive constant, may be helpful in
reducing oscillations in the prediction. Also, Kriging
is not able to deal with multiple values on a single
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location due to singularity of the deriving matrix.
Preprocessing of the data is needed and an average
operator has to be applied.

Ensembles of Metamodels

In order to improve the predictive qualities of
the metamodel, the DOE should be designed prop-
erly and adapted to the peculiarities of the response.
Since the response is unknown a priori, in order to
find clues about the locations in which it is advisable
or necessary to add more training points, one may
try to extract some indications by the combined use
of more metamodels [31, 72].

The basic idea for the ensembles of Metamodels
is simple: even if trained with the same set of data,
metamodels produce, in principle, different predic-
tions. One can then find the positions in which the
largest discrepancies between the two metamodels
occur; these regions are the ones in which it is useful
to insert a new training point, in order to improve
the predictive performances of the metamodel.

Kriging has been defined previously, and it ap-
pears as a relatively complex modelling strategy. On
the opposite side, the most intuitive way to produce
an approximation of the response is a local linear
model: the Multidimensional Linear Interpolation
Method (MLIM), described in [72], is a RV exten-
sion of a linear, 2D interpolation. It is based on
a Delaunay triangularization (cf. [25]) of the train-
ing set. Starting from that, we identify the hyper-
tetrahedron that includes the computational point.
Since the coordinates of the computational point can
be obtained by a linear interpolation of the coordi-
nates of the vertices of this hyper-tetrahedron, one
can use the same interpolation coefficients as weights
for the linear combination of responses available at
the vertices, providing the approximated response at
the computational point.

Numerical experiments produced in [72] give ev-
idence of the effectiveness of this strategy.

MULTI-OBJECTIVE OPTIMIZATION

As with most technological problems, optimal ship
design is a multi-objective problem, since improve-
ment of a specific aspect of the complete design usu-
ally causes the worsening for some others. More gen-
erally, the evaluation of different objectives makes
it possible to consider the trade-off between differ-
ent qualities of the ship. Under multiple objec-
tives, the concept of a global minimum point is no
longer available for the selection of the best configu-
ration: in fact, there usually exist different minimum
points, one for each objective. A different defini-

tion of optimal solution must therefore be adopted.
The concept of multi-objective optimality (i.e., the
optimum trade-off ) was proposed by the economist
Wilfredo Pareto in the early 1900’s. In brief, he de-
fined as a dominated solution all the configurations
whose objective function values may all be improved
(or at least not deteriorated) by another configura-
tion. Consequently, the set of configurations can
be divided into two different sets: dominated and
non-dominated solutions. The latter is the optimal
set, i.e., the set of solutions that cannot be further
improved without losing performances on at least
one objective. For a general introduction to multi-
objective problems and solution methods see [17, 62].

Aggregated Approaches

A solution of a multi-objective optimization
problem can still be found with single objective
methods (cf. [70]). In an aggregated (also referred
as scalar) approach, the multi-objective problem is
reduced to a single objective problem by using a lin-
ear weighted combination of all the objective func-
tions. The weighted function is often referred to
as merit function and implicitly defines a preference
order among the objective functions: any change in
the weight distribution requires the solution of a new
optimization problem. Another scalar approach im-
plies the definition of the optimal solution in the
sense of the desired values for the objective func-
tions (goal programming). The objective function is
then represented by the Euclidean norm, computed
in the objective function’s space, between the cur-
rent solution y¢ and the ideal solution y;:

M
F=3" vl

i=1
The problem with the aggregated approach is that
it provides a single final solution, without any infor-
mation about the sensitivity of the system with re-
spect to the different objectives. As a consequence,
we have no idea about the performance gains (or
losses) we would have on the system if we had put
a greater (or lower) emphasis on another objective,
and we cannot understand if the weight distribution
for the linear combination was the most effective or
not. Therefore, we prefer to always deal with true
multi-objective algorithms that provide the designer
with an entire set of optimal trade-off solutions.

High-Performance Multi-Objective Genetic
Algorithm MOGA
GA and MOGA

MOGA is an extended version of the Genetic Al-
gorithms (GA) (for a general introduction and re-
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cent survey see [17]), whose basic algorithm pro-
ceeds as follows: (i) generation of an initial popu-
lation of individuals in a random manner; (ii) de-
coding (if necessary) and evaluation of some pre-
defined quality criterion, referred to as the fitness;
(iii) selection of individuals based on a probabil-
ity proportional to their relative fitness; and (iv)
crossover (and mutation if necessary). Steps (ii)
through (iv) are repeated until the maximum gen-
eration. For a general single-objective optimization,
objective function, F', is directly related to objective-
fitness function, fy, e.g., by using the sigmoid func-
tion: fo = 1/[1 + exp(—F)] for maximization, and
fo = 1/[14exp(F)] for minimization. The functional
constraints are accounted for by using a penalty
function approach, which artificially lowers the fit-
ness if the constraints are violated and is expressed
as (with reference to Eq. (1)):

q

F=fo—r i‘gj(ﬁ)’ +Z‘min{o,hj(*)}’ :

where r is a penalty parameter.

The extension of GA for multi-objective opti-
mization is straightforward: the non-dominated set
of the entire feasible search space is the globally
Pareto-optimal set [21]. We state that a design vari-
able vector X is particularly less (in some defined
sense) than Y (symbolically X < PY) when the fol-
lowing holds: X < PY < (Vi)(x; < y;) A (Fi)(z; <
y;). Under this circumstance, we say that design X
dominates design Y. If a design is not dominated
by any other, we say that it is non-dominated or
non-inferior. The basic definition may be used to
find non-inferior points in MOGA in association with
the Pareto-ranking technique. The non-dominated
individuals of the entire population define front 1
(Rp=1, see Fig. 12); in the subset of remaining indi-
viduals, the non-dominated ones define front 2, and
so on; the worst individuals define front W, where W
is the number of fronts. At each generation, higher
fitness fy is given to individuals of higher Pareto
ranking, i.e.,

1

f0:R7P-

(11)

In practice, the population size for CFD-based
optimization is limited to a number of available pro-
cessors for computation. The Pareto front must be
searched by a limited number of individuals in the
feasible space as illustrated in Fig. 12. Therefore, a
scheme that yields diversity of individuals in the fea-
sible space will be preferred over that which yields
the convergence of individuals toward a particular

-

v

Fig. 12  Pareto ranking and sharing operations.
Fitness is given based on Pareto ranking and addi-
tive fitness is based on the uniformity of individual
distributions on the Pareto optimal set.

region. A final Pareto front can be defined by using
the history of all individuals generated in all gener-
ations.

BCGA and RCGA

Genetic algorithms are categorized as Binary-
Coded GA (BCGA) and Real-Coded GA (RCGA),
which are characterized by 3 actions—selection,
crossover, and mutation. They are defined as

Selection:

l‘i(t 4+ 1) = ffi

f(t)
where n is the population size, f; is a fitness of the
individual B; that is mutating from one generation
to another, and f(¢) is the average fitness of a popu-
lation. In a similar manner, changes in the frequency
through crossover and mutation are given by

Z‘i(t), i=1,...,n
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Crossover:

W(t+1)

=SS i )0 )

i=1 j=1
Mutation:

J(t+1) Z M;jx;(t

where C'is a crossover tensor, and M;; is a mutation
matrix which stands for the probability of mutation
from Bj; to B; over one generation. C' and M in-
clude crossover and mutation ratios, both of which
are system parameters.

In application to optimization problems that
have a continuous search space, some difficulties
with the original BCGA may appear (see e.g. [21]). In
this aspect, RCGA implementation is more suitable,
since real parameters are used without any string
coding and the problems defined in real parame-
ters are directly solved. A concern in RCGA is im-
plementation of crossover and mutation operations,
mainly because the string length is no longer finite.
Ono and Kobayashi [67] proposed a unimodal nor-
mally distributed crossover (UNDX) operator, where
three or more parent solutions are used to create two
or more offspring. Offspring are created from ellip-
soidal probability distribution with one or more axis
formed along the line joining two of the parent so-
lutions. The extent of the orthogonal direction is
decided by the perpendicular distance of the third
parent from the axis (see Fig. 13). When creating
a new solution this operator assigns more probabil-
ity near the center of the space between first two
parents than near the parents themselves.

X

Fig. 13 Illustration of Real-coded genetic algo-
rithm (RCGA) with unimodal normal distribution
crossover (UNDX).

For the present RCGA [96, 95], the mutation op-
eration is not explicitly implemented but is simu-
lated by using the “gene pool” approach. That is, a

gene pool whose size is larger than n is initially gen-
erated in a random manner, and genes in the pool
are used to replace those for the individuals with low
fitness. Through this approach, new genetic infor-
mation is always involved in creating new genera-
tions, which practically imitates the BCGA mutation.
Hence, the mathematical formulation of the present
RCGA is written as,

Selection:
fi
l'z(t + 1) = Txl(t)’ = ]-7 ,n
f(t)
Crossover:
J(t+ 1) ZZZC’ kli, j, k)x: (t)x; () xr(t)
i=1 j=1 k=1

where, n < ng, and ng is the size of gene pool and set
to be three times larger than n in the present work.
The crossover ratio in the present RCGA is inherently
1.0. As described in the earlier section, BCGA and
RCGA, described above, are used in the form of a
multi-objective optimization scheme, i.e., BC-MOGA
and RC-MOGA, respectively. An important drawback
of GA is the large computational load, larger than
that of any gradient-based optimization algorithm.
To deal with this problem, a parallel computing
technique has been adopted. The details are de-
scribed in the following section.

Parallel Coding Method

When GA was originally proposed, it was already
recognized that there is a parallel nature of the algo-
rithm along with the inherent efficiency of parallel
processing. Nevertheless, relatively little work has
been done in mapping GA to existing and advanced
parallel computing environments. A method for par-
allel coding adopted here is the master-slave model.
The layout of this model is straightforward, i.e., a
single master process performs GA operators, while
the slaves simply perform function evaluation. In the
present study, a process is assigned to a processor
so as to maximize CPU performance. Fig. 14 illus-
trates the present approach. Processor 0 is assigned
to master the overall process; processors assigned
to groups G-0 through G-m (where m + 1 is num-
ber of populations), simultaneously execute the CFD
method in parallel computational mode. In this
scheme, total number of processors is n(m + 1) + 1,
where n is the number of processors used for each
CFD execution. This approach fully utilizes the ad-
vantage of parallel coding for CFD as well as opti-
mization algorithms. The present parallel coding is
based on Message Passing Interface (MPI) architec-
ture, which is considered a suitable protocol for the
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present, distributed-memory-model parallel environ-
ment. The master and slave processes execute the
same code, and each role is defined in a different sub-
routine. Fig. 14 also shows an example for the main
routine. If the process ID (myid) is zero, subroutine
master () is executed, and for other cases, subrou-
tine slaves() is executed. In the master routine,
MPI_SEND() and MPI_RECEIVE(), routines are used
to communicate with the slave nodes by sending sig-
nals to the slaves to execute CFD computations, and
to receive a signal back from the slaves when the
computation is done. Each calculation can be run
in a parallel computational mode by using an as-
signed MPI group communicator and n processors.
When the slave routines are called, the slave nodes
assigned to each group execute the calculation and
send a signal to the master node when the calcula-
tion is complete. The present coding method results
in a considerably simplified message transmission as
well as in a clear description of separate roles for
master and slave nodes.

Algebraic test of BC-MOGA and RC-MOGA

In the following discussion, the performance of
the proposed BC-MOGA and RC-MOGA are evaluated by
solving some algebraic test problems originally pro-

posed in [20]. Three test functions are used: Egs.
(12)—(14), showing convex, concave and noncontigu-
ous convex Pareto fronts, respectively:
Flil‘l, G71+N7HZI“ N:30,
F
(12)
g N
F1:171, G=1+m;$i, N:30,
o 2
(13)
N
Fy = x4, G:1+N+1;xi, N = 30,
F F
F= (1 - ,/51 - Glsin(lowF1)>
(14)

Because we are focused on multi-objective op-
timization problems with expensive objective func-
tions, the tests have a maximum number of func-
tion evaluations fixed at 100 N. Bounds on the
range of the design variables are also applied, i.e.,
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Fig. 14 High-performance parallel-computing ar-
chitecture and coding for the multi-process algo-
rithm.

0 < z; < 1. The number of populations is 50, i.e.,
in this case 50 processors are used for function eval-
uation. Hence, the total number of processors used
isn(m+1)+1=>51 (e, n =1 m+1 = 50).
The maximum number of generations is 60, and
the system parameters are as follows: for BC-MOGA,
the crossover rate = 0.75, the mutation rate = 0.3,
and the single-point crossover mode is used. For
RC-MOGA, the crossover rate is inherently 1.0.
Figures 15 through 17 show a comparison of so-
lutions for the three test cases. In the figures, left
and right are solutions from BC-MOGA and RC-MOGA,
respectively. It is seen that the two MOGA results
indicate different convergence characteristics toward
the Pareto front. In other words, RC-MOGA results
show slower convergence but more diversity, which
results in more widely distributed individuals on the
Pareto front in the feasible space. Obviously, the
performance indicated in RC-MOGA is more promis-
ing regarding the aforementioned goal of the present
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(a)

(b)

Fig. 15 Comparison of solutions for a multi-
objective optimization test case. For T; (Eq. 12).
Left and right are solutions from BC-MOGA and
RC-MOGA, respectively. (a) Fy vs. Fy; and (b) 3-
Dimensional distribution (Fy, F», Generation).

(a)

(b)

Fig. 16  Comparison of solutions for a multi-
objective optimization test case. For T (Eq. 13).
Left and right are solutions from BC-MOGA and
RC-MOGA, respectively. (a) Fy vs. Fy; and (b) 3-
Dimensional distribution (Fy, F», Generation).

multi-objective optimization.

A Multi-Objective Particle-Swarm Optimiza-
tion Method

The PSO algorithm presented in a previous sec-
tion has been extended to deal with multi-objective
problems (MODPSO). The swarm particles, which
move themselves in the design space, are driven by a
combination between the personal best position for
each particle and the overall best position among
all the particles, with a velocity given by Eq. (6).
In order to apply this algorithm to multi-objective
problems, the concept of “best position” is replaced
by the concept of closest Pareto point.

Each Pareto optimal solution is defined as a pos-

(a)

(b)

Fig. 17 Comparison of solutions for a multi-
objective optimization test case. For T3 (Eq. 14).
Left and right are solutions from BC-MOGA and
RC-MOGA, respectively. (a) Fy vs. Fy; and (b) 3-
Dimensional distribution (Fy, F», Generation).

sible new py, i.e., a guide, and the swarm is subdi-

vided into [ smaller swarms, all capable of indepen-

dent evolution, each swarm following its own guide.

By defining different guides for the sub-swarms it is

possible to build a wider Pareto front. The strategy

adopted to assign the particles to the guides (i.e. to
form the sub-swarms) is based on the distance in the
design space between the particles and the Pareto

solutions (details are given in [78]).

Step I. (Distance evaluation) the ith particle eval-
uates its distance, in the design variables space,
from the Pareto optimal points;

Step II. (Guide selection) the ith particle selects
its closest Pareto optimal point as a guide, p; 5.
Set i =i+ 1 and go to Step I until i = Ng,.
As a consequence, the global best position is re-

placed with the closest Pareto point coming from the
Pareto front obtained by considering all the evalua-
tions by all the particles (Fig. 18), and the personal
best position is now the closest Pareto point among
those of the Pareto front. The equation for the com-
putation of the velocity is the same, but the meaning
of the two attractors has changed.

Based on [78, 95, 96|, results obtained with
these global optimization strategies (MOGA and
MODPSO0) for the solution of complex multi-objective
design problems will be reported in the following sec-
tion.

VARIABLE FIDELITY MODELING

Design engineers typically have a suite of different
tools to evaluate the performances of a ship, rang-
ing from some simple—i.e., low-fidelity (LF) models
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Fig. 18 Shortest Distance Criterion procedure
for constructing sub-swarms in multi-objective prob-
lems: S is the original swarm; S; are the sub-swarms;
Di b is the best particle of the sub-swarm .S;.

based on some simplified theory, often identical to
what was state-of-art in engineering practice decades
ago—to more complex simulation codes. Complex—
i.e., high-fidelity, (HF))—physics-based models pro-
vide obviously high quality in the predictions, at the
expense of large computational costs.

Variable fidelity modeling techniques (VFM) re-
duce the number of expensive HF analyses by taking
advantage of cheap LF models. The idea of using
computational models of varying fidelity has a long
history in engineering design: perform most of the
computations with the LF model and correct these
predictions by using indicators coming from a HF
model.

VFM procedures may be obtained by changing
the physics which are modelled, or by using differ-
ent grid densities or computational accuracies [16, 3].
Occasional (heuristic) recourse to HF models does
not ensure the convergence to HF solutions. The abil-
ity of the LF model to guide the optimization process
has to be monitored and its quality improved when
required, while consistency constraints have to be
enforced to ensure global convergence to the origi-
nal HF solution.

VFM for Gradient-Based Algorithms: an Ex-
ample

Although a LF model may not capture a partic-
ular feature of the physical phenomenon to the same
degree of accuracy as its higher fidelity counterpart,
a LF model may still have satisfactory global pre-
dictive properties for the purposes of finding a good
direction for improvement of the design. However,
the risk of a purely heuristic approach is that some-

Fig. 19 An example of Variable Fidelity. Left:
a perspective view of the potential and RANS solu-
tions as a function of the two design variables. Right:
a 2D view of the contour lines of the same quantities
(top: RANS solution, bottom: potential results).

times the LF model gives a poor or even an incorrect
prediction of the HF model’s actual behavior. An ex-
ample is given with the following preliminary design
study of the ballast bulb of a sailing yacht, which is
reported in detail in [74]. The bulb is parameterized
with two variables only. The design space has been
explored analyzing a number of trial designs with
both a potential flow solver (with a simplified model
for the vorticity shed from the keel) and a RANS
code. Computational conditions are heel = 10°, yaw
=4°, Fr = 0.38 (10 knots) and Re = 7.59 x 10”.

In Figs. 19 and 20 the objective function (the
total resistance of the complete sailing yacht), evalu-
ated by using the two codes, is reported as a function
of the two design variables. The potential flow model
predicts a minimum for total resistance at (0.5,0.5),
in contrast with the RANS prediction (minimum at
(-0.4,-0.2)). Evidently, in this case, the potential
flow code for the analysis of the function to be mini-
mized would have driven the optimization algorithm
toward a quite wrong design. Any heuristic VFM ap-
proach, with occasional recourse to the HF predic-
tion, would have encountered this problem.

Nevertheless, the assumption that the potential
solver is not useful in the solution of this problem
would be wrong. If a scaling function capable of
correcting the predictions of the potential solver had
been available, then the potential solver might have
still been useful. The VFM proposed in [3] is designed
with this aim. Defining ¢y (x) and ¢ (z) as the HF
and LF models, respectively, a possible correction
function is given by:

ou ()
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Fig. 20
RANS solver around two different configurations.
Axial velocity is plotted in three transversal sections.
An axial vorticity iso-surface is also highlighted.

Two sample solutions provided by the

so that:

B(x) - ¢r(x) = ¢u(w).

By expanding 3(z) in a Taylor series up to the
first order around the current design x(, one can ob-
tain the local approximation of the correction func-
tion:

Broe() = B(x0) + VB(wo)" (z — o),

and hence, the approximate value of the true, com-
putational expensive HF is (in the region surrounding
the current design zg):

O1(x) = Broc() dr(2).

This scaling function can be defined as first order
multiplicative. Recently this approach has also been
extended to second order. (There also exist first
order additive corrections.) It can easily be verified
that the approximate model ¢ (x) satisfies a first
order consistency condition [3]. The basic idea is
to solve the problem by adopting the approximated
model QZH(Z'), while the HF model is used just as
a check. This is possible due to the fact that 0.
is capable of realigning the local gradient of LF to
the direction of the HF gradient. In Figs. 21 and 22,
which refer to the total resistance of the sailing yacht
discussed above, the effect of the correction on the
potential flow-response surface is clearly evident.
However, with ¢ (x) based on quantities local
to xg, one has to keep in mind that the approxima-
tion cannot be applied in the whole design space
since we are progressively moving away from xzg.
Hence, the validity of the approximation has to be
monitored during the process. Trust-region methods
(see [18] for a complete reference) offer the possibil-
ity of defining a systematic way to check and adjust

POTENTIAL

o

F original

Fig. 21  Total resistance of the sailing yacht as
a function of the shape of the ballast bulb: a per-
spective view of the potential and RANS response
surfaces

the region (of radius r) in which we can still trust
the correction factor developed at design point zq.

The novelty of the method lies in the combina-
tion of the local model with a trust-region approach,
monitoring the radius of the of the trust region at
each step by analyzing the quantity,

n— n (k) — S (Tri1)

ou (i) — ou(wps1)

and recomputing the scaling factor 3(zg) and its gra-
dient V3(zq) only when needed (i.e., when R is far
from 1), avoiding any heuristic approach. A com-
plex ship design optimization problem solved with
this method is described in [73], where an overall
CPU time saving of about 70% was obtained.

VFM for Global (Derivative-Free) Optimiza-
tion Algorithms

The transposition of the previous approach to
global (derivative-free) algorithms is not straightfor-
ward, because the idea of using a local correction
model Fo.(z) cannot be extended to a method which
is intentionally not-local! To overcome this difficulty,
Gano, et al. [27] and Peri & Campana [74] recently
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Fig. 22 The corrected potential and RANS re-
sponse surfaces show substantial agreement.

introduced a Kriging-based scaling function to bet-
ter approximate the high fidelity response on a more
global level. The validity of the approximation is ex-
tended to the whole design space, allowing the global
optimization problem to be solved using derivative-
free methods. However, for the global version of
VFM, first-order consistency is lost, and the issue of
the equivalence of the original and the proposed for-
mulation is still an open question.

In order to reinforce the credibility of the
solution—avoiding a false value of the corrected
function to drive the optimization process—Peri &
Campana [74] check the solution further with the HF
model as soon as a potential minimum is detected, if
the distance between the actual minimum and a pre-
viously computed point is larger than a prescribed
value. This strategy is useful in fixing a criteria
for the control of the algorithm by the high-fidelity
solver. Also in this case, the trust-region radius is
monitored in order to reduce unnecessary computa-
tions of the objective function by means of the HF
solver, with a further reduction of the computational
time.

EXAMPLES AND APPLICATIONS

In this section different applications will be pre-
sented, in order to demonstrate the applicability of
numerical optimization techniques to the design of a
ship hull. Realistic geometrical and functional con-
straints have been adopted in the problem’s formu-
lation. It may be worthwhile to emphasize here that
for the complete definition of the shape design prob-
lem to be solved, some fundamental items must be
addressed: (i) the selection of an initial design (or set
of designs) and of the spacial extent of the region(s)
to be modified; (ii) the choice of the objective func-
tion to be minimized, (iii) the number of and the
spatial distribution of the design variables, and (iv)
the definition of the problem’s constraints.

Single-Objective Application: DTMB
Model 5415 Optimization

The single-objective optimization of DTMB
Model 5415 has been performed by the authors by
using two different SBD frameworks (SBD-A and
SBD-B). The SBD frameworks were developed using
different parametrization approaches (CAD-based
and CAD-free), optimization algorithms (derivative-
based and derivative-free) and CFD solvers. Two
different RANS codes were adopted as the CFD
solvers: MGShip [23] and Version 3.02 of CFDShip-
Towa [105]. Both codes use a surface fitting approach
to compute the wave pattern. As a consequence,
two different final geometries are obtained. However,
it is important to emphasize that the two final ge-
ometries present common geometrical modifications.
Details on the problem, solutions and model experi-
ments on the final optimized shapes are reported in
[13].

The initial design is DTMB Model 5415, which
was conceived as a preliminary design for a US Navy
surface combatant®. There is a large experimental
database for Model 5415, due to an international col-
laborative study on experimental/numerical uncer-
tainty assessments between ITHR, INSEAN and the
Carderock Division, Naval Surface Warfare Center
(see [94]).

Problem Formulation

The objective function to be minimized is the
total resistance, R, of the model advancing in calm
water at Fr = 0.28. This condition corresponds
to Re = 1.67 x 107 when using a reference length
of 5.72 m, which is the length of the ship’s model
adopted in the ensuing experimental validation. The

8Complete details of this transom-stern hull form can be
found on the world wide web at http://www.dt.navy.mil/
hyd/sur-shi-mod/
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Fig. 23  Sketch of the problem. The resistance
optimization is carried out in calm water, whereas
for the seakeeping constraint the ship is studied as
advancing with constant forward speed in head seas.

modifiable region is only the foremost part of the
ship, i.e., the bow and the sonar dome, about 20%
of the overall ship length. This is a typical redesign
problem of some part of an existing complex sys-
tem, a necessity which may arise in real industrial
applications when the performance of the new de-
sign is below the expectations. The test is a difficult
one, because the optimizer has reduced freedom and
hence expected improvements are small. The prob-
lem is solved for the bare hull.

For SBD-A, the displacements of the NURBS
control points in the CAD-Based approach are the
design variables of the optimization problem. For
SBD-B the variables are the control points of Béziér
patches used in the CAD-free approach (see Ap-
pendix B). In the latter case, 11 variables have
been used for the parametrization of the deforma-
tion: with reference to Fig. 23, two variables serve
for y-modifications of the region above the dome,
four for the y-modification of the dome, three for
the z-modification of the dome and two for the z-
modification of the keel line below the dome.

To introduce the elements of a real, complex de-
sign problem, functional and geometrical constraints
have been enforced. The functional constraints are
relative to seakeeping and propulsion (see Table 3).
For seakeeping, the monitored quantities are the
peaks of the heave and pitch RAO for head seas (de-
fined as the square of the amplitude of the regular
wave transfer function at each frequency). The sea-
keeping qualities of a design were evaluated using the
SMP seakeeping code [64]. Another functional con-
straint was imposed on the problem, relative to the
vorticity shed in the fluid by the dome. This quan-
tity is somewhat connected with the propulsion ef-
ficiency, cavitation inception and hydrodynamic sig-
nature. The sonar dome vortices may indeed travel
along the side and keel of the ship and finally interact
with the incoming flow seen by the propellers. The

Original

___Optimal

Fig. 24 Body plans of one optimized hull and
of the original one (results computed with the
CFDShip-Towa RANS solver). Modifications were
allowed only from the foremost section (stem) to
20% of the LBP aft of the FP.

stronger the vortices are, the less uniform the pro-
peller inflow is. A control region was placed imme-
diately aft of the sonar dome where the mean value
of the axial vorticity should not be greater than the
average relative to the original hull.

Geometrical constraints are also imposed on the
design variables, on the sonar dome volume, on the
bow entry angle, on the displacement and on the
principal dimensions of the ship. A complete defi-
nition of the problem, objective functions and con-
straints, is given in Table 3.

Although the computational meshes used dur-
ing the process were relatively coarse (on the order
of 250K grid points), they proved to be successful
in guiding the optimization algorithms. The final
shape was re-computed with a much finer grid (on
the order of 1.75M grid points) to check the esti-
mated improvements. The computational domain
extends 1.0 LPP forward, 1.0 LPP aft and 1.25 LPP
side-to-side. The grids are block-structured with
hexahedrical elements, and the transom region has
been properly modeled with a dedicated block.

A Variable-Fidelity (Variable-Grid) approach
has been applied for SBD-B, and only 36 calls to
the high-fidelity solver (i.e. the finest grid) were re-
quired, while 314 calls to the low fidelity solver (the
coarsest grid) were used.

The Optimized Designs: Numerical Results and Ez-
perimental Data

The optimization processes ended with final ge-
ometries that clearly display some common geomet-
rical trends. A careful analysis of the shape (Figs.
24 and 25) shows:

e a reduction of the maximum width of the dome
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Table 3  Definition of the nonlinear constrained optimization problem. A*, is the wavelength of the

({3

incoming waves nondimensionalized by the model length L,,. “0”, optimized; “p”, parent.

CONSTRAINT TYPE

DEFINITION NOTE

Functional
On seakeeping

On sonar dome vortices

&3 peak heave RAO
&5 peak pitch RAO

Sc = 0.5% + 0.5% o0, optimized; p, parent
All quantities computed for
A >04.
He = 0.5%@ <1.02
Pc=05% < 1.02
N it (@)}
VNl el <1 Vi€ Re Re: circular region placed at
1NN P2
N izt (W2);
x = —0.30,

centered at y = 0.02,
z = —0.07, with radius
r = 0.018.

Geometrical
Bow entry angle
Sonar dome dimension

Sonar dome position
Main dimensions

Maximum amplitude variation of 5° 2.5° per side
A sonar array of radius Ry
and height H, should
fit inside the dome H, =3 m, R, = 2.5 m, ship scale
Maximum forward position fixed
Lpp and depth fixed

Displacement Maximum variation 2%

01 ;_ Original [

o0 T wf

008k --oetimal of Original
g Cr — - - Optimal

0.07F
0.06 £
0.05
0.04H
0.03F
0.02f
0.01F

-0.01 f

0.02E

0.005

-0.005
T

Fig. 26  Wave profiles along the hull in the bow

Fig. 25 As in the previous figure, results com-  region, as computed with CFDSHIP (left) for the

puted with the MGShip RANS solver.

original shape and for one of the optimized shapes.

(and of the dome volume)—decreased by at

least 20%; length.

e a trend to increase of the length of the dome e a reduction of the entry angle and an increase
in the forward (z) direction. This is probably of the flare in the region immediately above the
limited by the grid topology that was adopted, sonar dome, differences extend from the stem
which did not allow large variations on the bulb to 20% of the LBP aft of the FP.
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Fig. 27 As in the previous figure, results com-

puted with the MGShip RANS solver.
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Fig. 28 Comparison of axial vorticity contours be-
tween the original and optimal hull forms in a trans-
verse section behind the sonar dome. The control
region is reported as a black circle.

The numerical results for the objective function
show that the SBD’s were able to identify improved
designs with lower total resistance with respect to
the original Model 5415. Ry reductions for the two
optimized shapes are found by both SBDs (—5.32%
and —3.01%, respectively).

As shown in Figs. 26 and 27, the computed
wave patterns also reflect the improved resistance.
The optimized models display remarkably reduced
bow wave amplitudes. Furthermore, the steepness
of the first wave crest and the first trough are also
appreciably reduced. Improvements are also found
in the pressure distribution (refer to [13]). As a con-
sequence of the change in the bow volume, the op-
timized model shows slightly improved seakeeping,
more for the heave RAO than for the pitch RAO.
The axial vorticity contours reported in Fig. 28
clearly show that the constraint has been satisfied.
The optimal model reduces the core of the main vor-
tex, which appears to be confined near the hull sur-
face.

2
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Fig. 29 Experimental validation of the two op-

timized shapes of DTMB Model 5415 (5415-A and
-B). Resistance reduction (%) as a function of the
Froude number, error bars are plotted for Fr = 0.28
and Fr =0.41

To assess the success of the optimization pro-
cess a dedicated experimental campaign has been
carried out on both the optimized models (SBD-A
and SBD-B). The success of the optimization pro-
cesses is confirmed by the experimental measure-
ments. Reductions of the total resistance with re-
spect to the original hull are reported in Fig. 29
as a function of the Froude number (values below
0% represent improved performance). At the design
speed (F'r = 0.28) the measured reduction of the
total resistance is about 3.80% for both the opti-
mized models, while the experimental uncertainties
are clearly smaller than this value. It may be of
interest to look at off-design conditions too: in the
entire tested speed range, a maximum reduction of
about 6% is obtained at F'r = 0.20, while at the
highest speed (F'r = 0.41) a very small increase is
measured which, however, is largely inside the error
bar of the experimental uncertainty.

Multi-Objective Application: High-Speed
Catamaran

The problem reported in this section concerns
the multi-objective design optimization of a high-
speed catamaran. Details of the problem and of the
solution may be found in [12, 95]. The definition
of the optimization problem is summarized in Ta-
ble 4. The ship to be hydrodynamically optimized
is a Bath Iron Works (BIW) design for a fast dis-
placement catamaran traveling in a range of speeds
between Fr = 0.4 and Fr = 0.7. Minimum and
maximum speeds are connected with the higher and
lower displacement (at the beginning and at the end
of the mission). A constraint is imposed on the max-
imum draught.

The ship optimization is performed in two
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Table 4 Problem description of the multiobjective optimization problem (p = parent hull form).

OBJECTIVE GEOMETRICAL FUNCTIONAL
FUNCTIONS CONSTRAINTS CONSTRAINTS
B (bridge) = (128, 0, 15) m Max. overall length = 170 m R—Z <1
R
T | Fr=0.460
D (flight deck) = (21, 0, 5) m Max. overall beam = 40 m
R
Sea state: 5, HEAD SEAS Draft < 6.5 m —Z; <1
Ry | pr—o.622
zp = Vertical acceleration Total displacement = 10785 t
at the bridge (RMS value) 03 < Lep/L <07 ip<02g

zp = Vertical velocity
at the flight deck (RMS value)
VCB = 4.193 m

KMToriginal S KMToptimal
KMLOTiginal < KMLoptimal
Hull waterplane area > 300 m?

2p <1.0m/s

Target speed: Fr = 0.541

minimize:
Fy =Rt
ZB ZD
Fo=05——+0.5—
? 02¢g 1.0

Fig. 30 Parametrization of the fast displacement
catamaran by means of the FFD approach. Some of
the vertices are grouped together, for a total of 50
design variables for each demihull.

phases. The problem is initially solved by using an
LF potential flow solver, adopting 50 design variables
(a relatively high-resolution design-space approach),
in order to perform a careful exploration of the pos-
sible design solutions. After that, the overall geo-
metrical trends have been identified and are used to
define Phase 2 of the problem, solved—with a small
number of design variables—by using a HF RANS
code, with higher accuracy (and higher computa-
tional costs). The RANS solver is CEFDShip-Iowa
Version 4 [14, 15]. The strip-theory code normally
used for seakeeping is not suitable for multihulls;
therefore, a 3D frequency domain code is used, the
INSEAN boundary-element method FreDOM [57].
In Phase 1, the parametrization of the hull is
performed by using the FFD approach [95]; the hull

Fig. 31 Pareto front approximation obtained by
means of the low-fidelity analysis with 50 design vari-
ables for the fast displacement catamaran.

is embedded in a control volume (see Fig. 30), and
partitioned into a prescribed number of subdivisions.
Intersections of the resulting grid can move in any
direction, deforming the control volume. Potentially,
each vertex of the FFD grid is a design variable, but
some of the corners are linked together, so that they
move the same amount in one direction. A complete
scheme of the parametrization is reported in [95].
The solution of the first (LF-driven) problem is
performed by adopting a hybrid optimization algo-
rithm, reported in [95]. A metamodel is used for the
approximation of the objective function, and the op-
timal solution is computed alternatively by a PSO al-
gorithm and a derivate-free, direct-search algorithm
(see [77] for more details). When an optimal solu-
tion is found (by using the metamodel), the opti-
mum is verified by the CFD solver (the HF analysis)
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Fig. 32 Design fast displacement catamaran so-

lution #203.

and then added to the training set of the metamodel
to improve its predictions. Final approximation of
the true Pareto front is reported in Fig. 31. The
design solution labeled as #203 represents the low-
est value of the second objective function that still
improves the first objective function too. The nondi-
mensional improvements are about —3% on both of
the two objective functions. The body plan of so-
lution #203 is shown in Fig. 32. This design was
finally selected as the preferable shape for this prob-
lem. Solution #203 was obtained by performing 160
objective function evaluations for the initial training
phase of the metamodel. Then 140 more objective-
function evaluations were performed for each pos-
sible optimal design detected during the iterations.
The time for the identification of the optimal solu-
tion is negligible, since a metamodel (whose com-
putation is incomparably faster than a CFD solver)
has been applied.

Comparison between the original and the
Phase 1 optimal solution, in terms of wave elevation,
is reported in Fig. 33, where clear improvements may
be observed.

The geometry of the Phase 1 optimal solution
has been assumed as a base for creating a number
of hull shapes to be adopted for the Phase 2 opti-
mization, solved with the RC-MOGA approach using a
RANS solver for the analysis. The system param-
eters of the RC-MOGA are as follows: crossover rate
= 0.75, population size = 16, and maximum gen-
eration = 50. The tentative designs are obtained
as a weighted sum of three baseline designs which
were produced manually using the trends and the
indications raised from the previous phase. Hence,
only two parameters are left free in the Phase 2 op-
timization. Their shapes are shown in Fig. 34. The
resulting Pareto front is given in Fig. 35.

An interesting and balanced solution among
those of the Pareto set has been selected for towing-
tank verification, for which the hull lines are shown
in Fig. 34. Two 4 meter models (the original and the
optimal) have been built and tested in the INSEAN
model basin (Fig. 36). Some results are reported in
Figs. 37 and 38. An improvement on the resistance

Fig. 33  Free surface elevation of the original (top)
and optimal (bottom) fast displacement catamaran
design. Red indicates high waves, blue indicates
deep troughs.

of the optimal hull is well documented for the whole
speed range, except for the very low speeds (outside
the optimizing range). At the optimization speed, a
large improvement was found (above 12%).

Regarding vertical motions, the vertical accel-
eration at the bridge increased by around 2%, while
the vertical velocity at the flight deck is reduced by
about 16%, producing a final reduction of about 9%
for the second objective function.

Single-Objective Application: Small Water-
Plane Area Twin Hull (SWATH) Ship

The results—presented in this section and re-
ported in full detail in [93]—are from a collabora-
tive effort by Bath Iron Works; Flight Safety Tech-
nologies, Inc.; the Carderock Division, Naval Sur-
face Warfare Center; and the University of Iowa,
in response to the US Navy’s need for design and
analysis capability for a High-Speed Sea-Lift (HSSL)
ship. The shape optimization was carried out
through parallel design optimization using a num-
ber of flow solvers with different fidelity, based on
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Fig. 34  Original fast displacement catamaran
hull shape (top left) and three baseline hull shapes
adopted for the solution of the optimization problem
using the RANS solver.

the optimization opportunities identified from an
analysis of the initial design provided by BIW. The
BIW-SWATH was optimized in parallel using dif-
ferent potential-flow solvers as well as the URANS
code, CFDShip-lowa, adopting different optimiza-
tion strategies. The results were cross verified using
the different codes to check for consistency.

The capabilities of the code, CFDShip-lIowa,
were extended during this study by implementing
numerous applications [14, 15]. For ship motion pre-
dictions at an arbitrary heading, regular and irreg-
ular, and unidirectional and multidirectional waves
were implemented using a Bretschneider spectrum
for the wave frequency and cos? spreading of the
spectrum, as recommended by ITTC (1978). To al-
low for the computation of large-amplitude motions,
a dynamic overset grid capability was used. This
was accomplished using the interpolation tool SUG-
GAR [66].

The CFDShip-Towa optimized SWATH was fi-
nally selected for model testing. The experimental
data from the model testing of the baseline SWATH
catamaran clearly showed that the conventional-
design approach for multihulls resulted in substan-
tial interference drag. The comparison of the
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Fig. 35 Exploration performed by the MOGA in

the space of the objective functions. The Pareto set
is reported together with the performances of the
original fast displacement catamaran hull plus the
three hulls selected as the baseline for the morph-
ing procedure. The selected design for experimental
verification is also reported.

Fig. 36 The optimized fast displacement catama-
ran during model tests.

numerical results from potential and viscous flow
solvers showed that viscous phenomena dominated
the SWATH optimization and hence necessitated a
URANS solver for the optimization.

The objective function was total resistance at
full scale with additional terms added for:

e amplitude of the near-field waves,

e panels with large aft-facing normals,

e total beam in excess of constraint,

e displacement less than baseline.

Design optimization based on potential flow
showed the capacity to reduce the drag of multi-hull
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Fig. 37 Total resistance of the original and the

optimal fast displacement catamaran hull shapes.

Original
Optimized

Fig. 38 Heave motion RAO at F'r = 0.541 for the
original and the optimized fast displacement cata-
maran shapes.

vessels significantly by reshaping the longitudinal
volume and demihull meanline distributions. How-
ever, sufficient constraints are required to prevent
the optimized designs from taking on characteristics
that increase drag due to phenomena not modeled in
potential flow. For example, a significant increase in
the bow-bulb sectional area, which manifests itself as
an increase in the sectional beam-to-draft ratio if the
bulb profile is constrained, can cause secondary flows
that increase the viscous drag and offset a reduction
in the vessel wave-making drag. This highlights the
importance of a non-heuristic variable, fidelity ap-
proach, as discussed previously in this paper.

CFDShip-lowa was interfaced with the Genetic
Algorithm reported in this paper [96]. The optimiza-
tion used a single objective function (the total resis-
tance). Prior to the optimization runs, two kinds of
sensitivity studies were performed: one-generation
initial-population runs; and three-generation propa-
gation runs. The purpose of these runs was to in-
vestigate the following:

e Initial feasible population size: the larger the

Crtboirrdd: Three contral peint B-Spline (3 dexign variables)

L]
t t t
— T - =
Fnboard: Constant reduction (1 design variablc)

v

Depel wise: One control poing B-Spline with cos fixed ar
mnaxinmn dvaft Tocations (1 dexign variables)

Fig. 39 Geometry modification technique for the
SWATH designed by BIW

initial population, the lower the number of gen-
erations required to get the optimal solution,
the cost of doing this is the number of initial
processors. Trial runs were conducted with ini-
tial population sizes of 6, 9 and 18, with 30,
45 and 90 processors, respectively. An initial
population of 9 was deemed feasible as the 18
population case crashed due to one member be-
ing sent to a bad processor node. This case also
took much longer in the batch queue.

e Number of solver iterations necessary to get the
trends: The rank of each member in the popu-
lation (lowest resistance to highest) determines
how the current population will propagate. It is
not necessary to get the fully converged solution
at each generation. The rank becomes evident
after 150 iterations for the captive model (w/o
sinkage and trim). Full convergence requires
300400 iterations for the captive model. For
the free model (predicted sinkage and trim) the
rank becomes evident after about 250 iterations.
Full convergence requires 500-600 iterations.

Following the preliminary sensitivity studies and ini-
tial propagation runs, the final optimization run was
carried out with a limit of 15 generations. The final
optimization run used 5 design variables: 1 inboard,
3 outboard and 1 depth wise, based on the sensitiv-
ity studies (see Fig. 39).

CFDShip-lowa predicted a total resistance re-
duction of 5.2% for model scale, which stems mainly
from the reduction of C,.. At full scale, the contri-
bution of C, to the total resistance increases and
hence the expected total resistance reduction in the
full-scale ship is about 8.65%. A comparison of the
wave elevation and the surface stream lines is shown
in Fig. 40 The optimized SWATH shows reduced
wave amplitudes in the interference region between
the hulls, which is responsible for most of the drag
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Fig. 40 Flow-field comparison between original
and optimized geometries: (a) Free-surface eleva-
tion, top view; (b) Free-surface elevation, top bow
view; (c) Free-surface elevation with stream lines
and hull-surface pressure, bottom bow view; (d)
Free-surface elevation with stream lines and hull-
surface pressure, bottom stern view.

reduction. The local stream lines near the aft end of
the optimized SWATH do not exhibit the cross flow
seen in the original SWATH design. This turned out
to be an added benefit as it relates to the vortical
flow past the aft end of the hulls. Fig. 41 shows the
iso-surface of @ depicting regions of vortical flow for
the original and the optimized configurations. As
seen, the optimized hull does not exhibit the vortex
flow emanating from the aft end, which would be a
benefit for propeller performance.

ROBUST AND MULTIDISCIPLINARY
DESIGN OPTIMIZATION FOR SHIPS

In this section we introduce two relatively less dif-
fused branches of SBD frameworks, namely methods
for Robust Design and for Multidisciplinary Design
Optimization.

As the engineering environment in general
becomes extremely competitive, designers have
become increasingly concerned with managing
uncertainties—manufactured products deviate from
designed products; actual products must perform
under a variety of operating conditions. Robust De-
sign methods, developed to improve product quality
and reliability in industrial engineering, are to pre-
vent such uncertainties. The tools of statistical de-

Fig. 41 Comparison of aft-end vortical flow be-
tween original and optimized hull forms using the
iso-surface @ = 5.

cision theory, specifically Bayes principle, provide a
sound framework in which to formulate the problems
of Robust Design. The difficulty with exploiting this
framework is computational, involving the numeri-
cal integration of expensive simulation outputs with
respect to uncertain quantities. To what extent this
difficulty can be overcome remains to be seen, but
we are encouraged by the advances in computational
tools as well as in computer hardware.

Multidisciplinary Design Optimization (MDO)
evolved as a new discipline during the late 1990s [90]
and refers to an area of research that deals with the
development of systematic approaches to the design
of complex engineering systems governed by inter-
acting physical phenomena. As summarized in [1],
the traditional design approach has been about
meeting requirements (i.e. the constraints) rather
than finding optimal solutions. In the Mulltidisci-
plinary Design approach, the emphasis is on series of
disciplinary simulations and individual disciplinary
optimizations, with results reconciled among disci-
plines. On the other hand, MDO deals with the
explicit manipulation of the design variables in the
disciplinary computational models, in the context of
the optimization algorithms (see [2] and the special
issue [1] for a general introduction to definitions and
for recent applications of MDO).

Robust Design using Numerical Simulations
Statistical decision theory, via the Bayes princi-
ple, provides a conceptual framework for quantifying
uncertainty, but it involves the numerical integration
of expensive simulation outputs with respect to un-
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certain quantities. For this reason, the application
of statistical decision theory to Robust Design has
rarely been attempted and lies at the frontier of cur-
rent engineering practice.

Using ideas from statistical decision theory, the
problem of Robust Design can be formulated as an
optimization problem. We may consider an objec-
tive function of the form f: Ax B — R wherea € A
represents the design (controlled by the designer),
b € B represents the uncertainty (not controlled by
the designer), and f(a;b) quantifies the design per-
formance’s loss when condition b occurs. The opti-
mization problem could then be to find a* € A such
that, for every b € B,

fla*;b) < f(a;b) Va € A.

The problem of finding a* € A that simultaneously
minimizes f(a;b) for each b € B can be seen as
an attempt to find a decision rule that simultane-
ously minimizes risk for every possible state of na-
ture. This is a central problem of statistical deci-
sion theory, unfortunately it is unsolvable. There
are methods to accomplish partial objectives [26].
The Minimax approach tries to minimize the risk of
the worst-case scenario, often leading to designs that
are too conservative.

Alternatively, the Bayes principle can be stated
as:

$§ﬂ%

o = [ Fat)pit)av
B

where p is a probability density function on B. In
other words, the Bayes principle seeks to minimize
the average loss in a sense that can be tailored to
the application, by a suitable choice of the proba-
bility distribution p. This formulation of the qual-
ity control problem was first proposed by Welch et
al. [104]. Optimization under uncertainty therefore
replaces our objective function f with the more com-
plex function:

wwzéfwmm@@

If each evaluation of f is expensive (e.g. one RANS
solution), the numerical integration of f is very ex-
pensive. The Design and Analysis of Computer Ex-
periments (DACE, [103]) has been among the first ap-
proaches suggesting a simple procedure to minimize
the use of expensive simulations through the use of
surrogates. To integrate the kernel of the proba-
bility integral K(b) = f(a;b) p(b), one can choose
by, ba,...,b, and evaluate K at each b; and approx-

imate the integral by some quadrature of the form:

/ K (b) db ~ zn:ciK(bi).
B i=1

The DACE idea is to replace the exact K with an
approximation, K, and rely on the approximation:
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The approximation K can be obtained by inter-
polating values of K at some given b; or, alterna-
tively, by using some low-fidelity—computationally
inexpensive—model f of f so that:

K(b) = f(a;0) p(b).

Even if applications of Robust-Design optimization
methods to ship-design problems are infrequent,
these techniques have already been applied in other
related design areas such as the aerospace, aero-
nautical and automotive industries (see [69], [7]).
Some preliminary results are reported in [22], where
a bulk-carrier design problem—proposed in Parsons
and Scott [70]—is addressed.

Multidisciplinary Design Optimization

The design of a ship encompasses interacting
physical phenomena such as hydrodynamics, struc-
tural mechanics, and control, to name a few. These
interactions make the ship a synergistic whole that
is greater than the sum of its parts. Unfortunately,
these interactions are often not easy to untangle, and
the detailed design work has to be split into specialty
areas centered on a physical phenomenon.

Examples of MDO applications to industrial
fields other than the naval field can be found mainly
in the aerospace and automotive industries (cf. [2, 1,
91]). To introduce some generalities about MDO for-
mulations, simple two discipline problem is reported
in Appendix C. MDO examples applied to ship hy-
drodynamic designs are still very limited, and are
mostly connected with the early stages of the design
(e.g. [48]). A recent example of MDO, from [12],
presents simulations of the detailed design of the fin
keel for a sailing yacht, simultaneously accounting
for hydrodynamics and elasticity.

In Fig. 42, a picture of a classical configuration
for this class of yacht is shown. The heavy bulb
(sometimes up to 90% of the weight of the yacht!) is
attached to the hull by a long thin fin keel (Fig. 43),
responsible for the side reaction of the hull. The
fin keel is asked to give an high side force without
paying for it with large drag. Due to its extreme
slenderness, the fin’s deformation under the hydro-
dynamic loads is not negligible: (sailing teams often
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Fig. 42 Classical configuration of an America’s
Cup Class Yacht.

Fig. 43 The righting moment given by the ballast
bulb.

report a relatively large deformation of the fin keel
as seen from aboard when the yacht is heeled).

A pure fluid-dynamic approach would simply
consider the hull, the fin keel and the bulb as rigid,
connected bodies. In an MDO framework these are
considered instead as elastic, and the shape of the
fin keel is hence modified by the hydrodynamic loads.
As a result, the final performance of the yacht is also
influenced by the structural behavior of the fin. In
[12], the optimization problem is solved comparing
different MDO formulations in a global optimization
framework.

In [12] the shape of the fin keel is parameter-
ized using 4 design variables. The modified geom-
etry is obtained by superposition of a Béziér patch
on the original fin keel. The original fin-keel design
was taken from the available data for the America’s
Cup sailing yacht Il Moro di Venezia [6], as were the
material properties (e.g. the elastic modulus of the
material). The original fin keel was cylindrical—
the section of the fin does not change throughout

Fig. 44 Maximum deformation of elastic keel
(thin red line), with respect to the rigid one (thick
black line), at the junction with the keel bulb.

Fig. 45 Same as the previous figure but for the fi-
nal optimized geometry. The thick black (thin red)
line is the optimized geometry in undeflected (de-
flected) condition.

the span. The objective was to maximize the ratio
of the side force to the drag. Two different codes
were used for the solution of the structural and hy-
drodynamic problems. For the hydrodynamic prob-
lem, a free-surface potential-flow solver with lifting
surfaces (the INSEAN code WARP, [5]) was applied,
while a FEM solver was used for the structural prob-
lem. In the conditions analyzed, the elastic deforma-
tions produced a reduction in the efficiency of the fin
of about 10% (the drag increased and the side force
decreased).

A comparison of the initial and the final shapes
shown in Figs. 44 and 45 reveals that the optimal
shape is (as expected) thicker than the original one,
which in turn leads to a reduced elastic deforma-
tion under the effect of the hydrodynamic loads, as
can be observed by comparing the lateral bending.
Even if the thickness is higher, the fin efficiency (the
objective function) is increased by about 41%.

CONCLUSIONS

In recent years, computational tools for hydrody-
namic optimization (also referred to as Simulation-
Based Design methods) of ships have been develop-
ing at a fast pace. The key elements of these tools,
besides the accuracy and robustness of the numerical
flow solvers, are algorithms for constrained, contin-
uous optimization, mesh deforming techniques, and
surrogate and variable fidelity models. The paper
briefly describes some gradient-based (for local op-
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timization problems) and derivative-free (for global
optimization) methods, analyzing some of the avail-
able techniques for the selection of the design param-
eters, for the construction of the metamodels and
for variable-fidelity approaches. Robust design and
multidisciplinary design optimization methods are
finally briefly introduced. Some hydrodynamic ship
design problems (either single- and multi-objective
problems) are solved, demonstrating the maturity
and applicability of these techniques to real-life de-
sign problems. The improvement of the accuracy
and the robustness of the state-of-the-art numerical
solvers and a deeper integration between optimiza-
tion code developers and ship designers are probably
the key points in the diffusion of these methodolo-
gies.
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APPENDIX A—CONSTRAINTS IN OPTI-
MIZATION

The fundamental role of constraints in the solution
of an optimization problem can be easily obtained
from a simple example. Let’s assume our optimiza-
tion problem to be the following:

F(xl,xg)
subject to xo < —2% + 10

minimize
(15)
Ty > 23 — 10

The feasible set (shown in Fig. 46) is repre-
sented by the portion of space #2 included between
the two curves zo = 22 — 10 and x5 = —z7 + 10.
The set is closed and convex, i.e. each point of a
segment connecting any pair of points of the feasible
set still belongs to the feasible set. This property of
the problem allows an easy exploration of the feasi-
ble set. On the contrary, if we add a new constraint
to the previous problem, the problem is now:

minimize F(x1,x2)

subject to xo < —2% + 10 (16)
Ty > 7 — 10
r]+ a3 >4

(the resulting feasible set is shown in Fig. 47). In
this second example, which will also be helpful in
the discussion about local and global optimization

Fig. 46 Feasible set resulting from the example
in Eq. (15). The z1- and z3-axes are not the same
scale. The feasible set is represented by the shaded
region.

methods, the feasible set is non-convex and disjoint
(non-connected), presenting two distinct islands. If
we try to proceed along a continuous path inside the
feasible set, starting from an initial point inside one
of the two islands, we cannot reach the points of the
second island. Since local optimization methods are
used to proceed along pseudo-continuous paths, this
means that local optimization methods are not able
to fully explore this class of feasible sets. This is
one reason to switch from local to global optimiza-
tion methods, which do not suffer from this incon-
venience, and will be discussed later. By a further
shift of the constraints, we can reduce the exten-
sion of the feasible set, so that the identification of
a feasible solution may become very difficult. This
situation, which may happen in real problems, is not
easily detected since the correlation between design
parameters and feasible set is often not as straight-
forward as in these algebraic examples.

The application of geometrical constraints often
translates itself into bounds:

M .
b <a; <b, i=1,...,N,

defining a parallelepiped II in the N-dimensional de-
sign variable space. In a similar way functional con-
straints may also be imposed, assuming that

f <giX) <, j=1,..,0 (A7)

where the g,;(X) describes some performance as a
function of the design variables—for instance, the
ship’s total resistance at a given speed, or the re-
quirements concerning the stability of the ship—
which the designer may decide to confine within
a suitable range. The constraints in Eq. 17, ap-
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Fig. 47 Disjoint feasible set resulting from the
example in Eq. (16). The z1- and xs-axes are not
the same scale. The feasible set is represented by
the shaded region.

plied to II, single out the feasible set, S, in the
N-dimensional design space, i.e., S C II is the set
of design solutions that satisfy all the constraints.
The shape of the feasible set, S, may result in a
non-convex, non-connected region; this represents a
crucial difficulty in the solution of the optimization
problem. In fact, some optimization algorithms pro-
duce a convergent sequence of trial solutions along a
nearly-continuous path, and are unable to jump from
one side to another of a non-connected feasible set.
As a consequence, this class of algorithms may be
highly penalized by the selection of the initial solu-
tion, because the starting point may be in the wrong
portion of the feasible set. Furthermore, if the feasi-
ble set is non-convex, they may be stuck in a corner,
unable to proceed toward the optimal point. In gen-
eral, constraints need to be accounted for, for proper
treatment in an optimization problem, the final goal
being the translation of a constrained problem into
an unconstrained one.

APPENDIX B—PARAMETRIZATION

In deforming the geometry of a hull form, one has
to follow some general guidelines:

e if the modified part is a subset of the entire hull,
the modified geometry has to join the original
design without discontinuities in the first and
second derivative;

e the number of design variables should be kept
as small as possible to minimize the number of
evaluations of the gradient of the objective func-
tion, but ...

e ...the hull modification algorithm should be as

flexible as possible in order to allow the analysis
of a wide range of possible solutions.

Details of the
Béziér-patch approach

A simple way to deform the ship geometry is to
superimpose a Béziér patch on the hull that gradu-
ally reduces to zero perturbation when approaching
the unmodified portion of the hull. The patch is
controlled by a Béziér frame of m x n nodes, which
are related to the patch via:

Ly i(u) T 5 (V) Pigs (18)

where Yg are the coordinates of the Béziér surface,
u and v are nondimensional parameters along the
2- and z-directions, p; ; are the y-coordinates of the
Béziér frame nodes and

Ini= <7Z) (1—w)" !
Im,j = <Zn> (1—v)™ Il

Since the Béziér surface is defined on a 2D-unit
square, we need to map the hull surface onto an unit
square. To do that, we can use the coordinate lines
provided by the regular structured grid commonly
used in CFD codes to digitalize the hull surface. A
structured regular (N x M) grid defines two indexes
for each grid point, (say from 1 to N and from 1
to M). We can normalize these values by the maxi-
mum value so that each grid point is now associated
with a pair of real numbers included in [0 : 1]. The
Béziér surface is defined by a net built on this unit
square. Since the Béziér surface is defined as a con-
tinuous function in the selected portion of the 2D
space, we can compute the height of this surface on
every point of the unit square, in particular those co-
ordinates which are associated with the grid points.
These values are now simply superimposed on the
y-offsets of the hull to obtain the modified geometry
via

Yu, ., = Ygo(u,v) + Yp(u,v). (19)

mod

More patches can be used allowing for a complete
modification of the geometry along the three direc-
tions.

Details on the Free-Form Deformation (FFD)
approach

The FFD, introduced by Sederberg and Parry
[86] in computer graphics, is a very flexible approach
to deform a 3D object, whose geometry is given by
points. This approach can be essentially reduced to
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a 4D-Béziér patch to be applied to the hull surface.
In fact, in the previous superposition approach, we
are using a perturbation function mapping an unit
square defined by the nodal indexes. If we now define
a box surrounding the hull surface, we can define a
Béziér polynomial inside this 3D domain, producing
a scalar function of the 3D space. This function,
defined as

n m l

F(U,U,'LU) = Z ZIn,z(u)

i=0 j=0 k=0 (20)

X I, (v) Ki gk (w) pijk,

with the same structure as Eq. 18, could represent
the displacement along a prescribed direction, and
is applied to every hull point in order to produce
the deformed geometry. The definition of coeffi-
cients is similar to those for Equation 18, and comes
again from the theory of the Béziér polynomials.
The Béziér function is defined inside the box placed
around the object to be deformed, and we can com-
pute the deformation on every point inside this box.
The deformation is not defined outside.

Details on the Morphing approach

In the morphing approach, the deformation is
produced starting from a number of prescribed hull
shapes. As a consequence, we need P designs for the
same hull, and we also need a computational grid
with the same subdivision. We are going to adopt
a mapping between the grid points of the different
designs based on the grid topology. If we have a
suite of grids, all subdivided into (N x M) intervals,
we can pick a generic (4,j) point on the grid, thus
defining

X(Zaj) = lel(l,J)+WQX2(l,J)++prp(7z7j),

plus the condition

Here X (4, j) represents the vector of coordinates of
the generic point with grid coordinates, (4,7), be-
longing to the kth grid. This approach produces
a linear blending among the available geometries,
which obviously limits the possible shapes implicitly
defined by the designs provided. However, we can
simply investigate some specific solutions by means
of a really limited number of parameters (1 — P, due
to the condition of the sum of weights equal to 1).
The transition from one shape to another can also
be different than the linear one, and the reference
grid can be also of different topology from design to
design, allowing a larger variety of hull shapes.

Objective
CAD Function
Constraint
Function
16es control S FNETTC BN [RPTS

Fig. 48 Implementation of CAD-based hull-
form modification in the optimization environment
(IGES, Initial Graphics Exchange Specification).

CAD-based approach

To modify the ship geometry, a CAD-based
hull-form modification method was adopted. Two
approaches are possible, i.e., CAD direct control and
CAD emulation approaches. Both approaches were
successfully demonstrated by the present authors
[97] and others. Here, the CAD emulation approach
is reported. As shown in Fig. 48, a module is im-
plemented in order to emulate manual CAD manip-
ulation of the mathematical surface. This approach
offers an advantage over the CAD direct-control ap-
proach for complete independence from the CAD
system, i.e., designers are able to use any CAD sys-
tem and give and receive the initial, optimized hull-
form geometry in Initial Graphics Exchange Speci-
fication (IGES) data format.

A NURBS surface is given mathematically by:

Dm0 2o Nip (W) Nj g (v)wi ;P
Z?:o Z;nzo Nip(u)Njq(0)wi;

where u and v are the parameters; IV; ;, and N; 4 are
normalized B-spline basis functions of degree p and
g in the u and v directions, respectively; P;; are
the vectors of the control points; and w;; are the
weights.

Finally, the surface is defined by [(n+1)(m+1)]
control points and weights, and knot vectors of
n+p-+2 and m+ g+ 2 elements in the v and v
directions, respectively. A modified surface is de-
fined corresponding to new location vectors, P", so
that:

S(u,v) =

Pl = P + 6Py,

where Pi?j and 0F; ; are the original and displace-
ment location vectors. §F; ; can be the design vari-

ables of the optimization problem.
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APPENDIX C—A TWO-DISCIPLINE
MDO PROBLEM

We introduce here a simple, two-discipline MDO
problem (A; and As): the hydroelastic coupling be-
tween hydrodynamics (A1) and structural analysis
(As) for the keel fin of a sailing yacht in steady for-
ward motion with a drift and a yaw angle as in [12].
The two disciplinary systems are the basic elements
of the MDO problem. We assume that each disci-
pline is based on a disciplinary analysis (from simple
algebraic formulas to complex PDEs) that may be
schematically depicted as an input-output relation:

S0

S, li7 Di .. . a
— > Disciplinary Analysis A;

The input of each discipline are a set of design vari-
ables, (s,l;), and parameters, p;, and the analysis
produces a set of outputs, a;. The system-level
design variables, s, are those shared by both disci-
plines. The disciplinary design variables, [y and s,
are local to Ay and As, respectively. Parameters,
p;, are derived from the analysis outputs, a;, j # 1,
of the other discipline. They are not directly ma-
nipulated by the designer in A;. In our hydroelastic
example, the input, p;, from structures to hydrody-
namics would include the fin keel shape, while the
input, p2, from hydrodynamics to structures would
include the hydrodynamic loads.

The disciplinary analyses have the functional
form a; = A;(s,l;,p;). Ay and Ay are assumed to
be independently solvable. In our hydroelastic ex-
ample, given the shape of the fin (the values p1) one
can solve A1 and obtain the flow field and the pres-
sure around the fin (a;) and analogously for As.

Now, in the context of the MDO prob-
lem, the coupled Multidisciplinary Analysis Sys-
tem (MDA) reflects the physical requirement that
a solution simultaneously satisfy the two disci-
plinary analyses. The input parameters, p;, for
each discipline are now required to correspond
to some (or all) of the outputs, a;, from the
other disciplinary analysis. Schematically, we have:

S, ll
— > Disciplinary Analysis Aq
S,lg

Disciplinary Analysis Ag

The multidisciplinary analysis system is there-

fore given by the simultaneous system of equations:

a; = A1(87l1,02)
21
{ az = As(s,l2,a1), (21)

where the solution of the discipline A; gives the in-
put for the discipline analysis Ay and vice versa,
therefore implicitly defining a; and a5 as functions of
(s,11,12). Solving the fully coupled system Eq. (21)
leads to a full multidisciplinary analysis (MDA).
The solution is in this case a consistent solution
that satisfies both disciplines. Again, if A; rep-
resents hydrodynamic analysis of the flow around
the fin keel and Ay represents structural analysis
of the fin, a; and as may represent the flow field
near the keel and the deformed shape of the fin
keel due to structural response and hydrodynamic
loads, respectively. The calculation of the flow field
ay requires the shape of the fin keel, which is con-
tained in ag, while the calculation of the fin deforma-
tion ay requires the hydrodynamic loads, contained
in a;. The formulation of a two-discipline MDO
problem involves the previous definitions but in the
framework of an optimization problem. Up to now
we were just looking for a multidisciplinary equilib-
rium between the two disciplines. The most natu-
ral optimization problem formulation is to impose
an optimizer over the MDA Eq. (21). In fact, this
approach has been commonplace in engineering for
many years. The formulation is depicted as follows:

Disciplinary Analysis Ay

Disciplinary Analysis Ag

min f(SaalaQQ)
S,ll,lg
subject to g1(s,l1,a1) <0

92(s,12,a2) <0

where g1 and go are the disciplinary design con-
straints. Many different MDO formulations exist
that can be built starting from the above formula-
tion. Recent efforts in analysis and development of
problem formulations for MDO can be found in the
recent, special issue that the journal, Optimization
and Engineering, dedicated to MDO (see [1] for the
complete reference).
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Discussion

Dane Hendrix, Member

I congratulate the authors on compiling a remarkable
collection of hydrodynamic optimizations.  This
collection is remarkable not just for the variety of cases
addressed but more for the variety of tools used to
attack those problems. I am especially interested in
learning more about meta-models and intend to follow
up on some of the references you provide.

There are a number of questions | could ask about the
work presented, but | will restrict myself to just a few
more general questions.

(1) Is there a reason that you don't use a series of
gradient method optimizations to generate a Pareto
front? It seems that for smooth objective functions this
would be a more efficient method than using a global
optimization method.

(2) Most of the examples you give are point designs.
That is, the objective is for a single speed or wave
frequency. Do you have any experience that would
indicate that the optimization process is better behaved
when you use an objective function that addresses a
range of conditions? My experience is that this reduces
the problems of local minima keeping a descent
method from finding a global minima (Percival, 2001).

(3) I find it helpful to think of optimization as
consisting of three parts:

- the geometry modification
- the objective function evaluation
- the optimization algorithm

(3a) You have presented one very good example of
using different optimization algorithms for the same
problem in the hull-form optimization for seakeeping
section. Here you use three different optimization
algorithms to analyze the same problem. From Tables 1
and 2 it is not clear that they have all converged and
the intermediate results presented in Figure 9 suggest
that they may not even be converging toward the same
minima. In Table 2, FILLDIR appears to have
produced a better result than DDFPSO or DIRECT
while in Table 1, the opposite is true. Does this say
something about the initial efficiency of each of these
methods? Would it be instructive to push each of these
algorithms to convergence?

(3b) In one case where you investigated two different
objective functions for the application to a sailing yacht
keel, you found that for the conditions investigated that
the initial gradient from your low fidelity model
(potential flow) was almost exactly opposite to that
given by your high fidelity model (RANS). Is this
because of significant separation in the original
geometry? Or was the low fidelity potential model
ignoring lift? Or was there some other characteristic of
the flow that led to this result?

(3c) Have you looked at the effect of different forms of
geometry modification on the optimization result? In
the HSSL SWATH example you discuss using initial
sensitivity studies to down select design variables.
Could you offer some more information on how this
was done?

(3d) Do you have any opinion on whether increasing
the number of design variables for different types of
hull parameterizations converge to the same result?

(4) What are the sources of the differences in the 5415
optimizations presented (solver, hull discretization,
how RAOs are evaluated, other)?

Again congratulations on an excellent paper and | look
forward to your responses.

Percival, S., Hendrix, D., and Noblesse, F. 2001
"Hydrodynamic optimization of ship hull forms," App.
Ocean Research, 23, pp. 337-355.

John Kuhn, Member

The authors have made a significant contribution by
presenting a broad assortment of techniques that cover
many important issues in hydrodynamic optimization.
In addition, they have demonstrated that large
performance gains are possible if pertinent aspects of a
design are able to be changed with sufficient freedom
by the optimization process.

Many elements of the paper are worthy of discussion,
but in the interest of brevity | will restrict my attention
to only one item: seakeeping optimization. The
example in the paper based on heave motion of the
S175 containership in head seas reminds me of an issue
that we confronted recently. Specifically, we have
found that it can be important to include a range of
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headings in work of this sort, and | was wondering if
any analysis was done to assess the way in which the
heave optimum for head seas performs at other
headings, or in other degrees of freedom (i.e., roll or
pitch).

In one of our recent studies we minimized roll motion
in beam seas. A significant improvement was achieved
in beam seas, but the roll became worse at another
heading. Although roll may be more sensitive than
heave in this regard, the results that we found illustrate
a basic issue, so I will summarize some of our findings
to motivate discussion. Briefly, we minimized the root
mean square (RMS) roll motion of a large
displacement ship in sea state 5 beam seas with 20
knots forward speed. The problem contained an
assortment of practical design constraints, and was
solved with the SHAPE optimization code (Kuhn et al.,
2007). All of the seakeeping calculations for the
objective function were done with the Large Amplitude
Motions Program (LAMP; Lin et al., 1999). The RMS
roll was reduced from 6° (for the baseline) to 4.2° (for
the optimization), which is a 30% reduction. However,
performance at other headings that were not included
in the optimization varied in both favorable and
unfavorable directions, as shown in Figure 1.

Roll vs. Heading In Sea State 5

baseine
W 50 deg optimum

Figure 1 Results for optimum based on roll
minimization at 90° heading (0° is following seas, 180°
is head seas

Although the roll motion declined significantly for the
single heading that was included in the optimization
(i.e., 90°), it became considerably more severe at the 60°
heading (which was not included in the optimization). In
fact, it looks like the most adverse heading for the
optimum has shifted to somewhere between 60° and 90°,
but we did not examine any intermediate headings in an
attempt to find the new peak.

We decided to include multiple operating conditions in
the optimization as a consequence of this behavior.
One could, in principle, approach this as a
multiobjective problem with individual objective
functions for every operational condition of interest.
However, this could entail a significant matrix of
headings, speeds, and sea states. The matrix should
also include multiple degrees of freedom (i.e., heave,
pitch, and roll). The overall matrix could easily become
very large, making the use of Pareto optimality based
on all such objectives an onerous chore. There could
easily be 30 or 40 objectives (or even more).

As an alternative, we have found it effective to use
constraints for those conditions that are not handled as
an objective. Thus far, this has only been investigated
for local optimization in the vicinity of the baseline
design, but it has produced some interesting results.
For example, it is possible to constrain the roll motion
for headings other than beam seas, while minimizing
roll in beam seas. This yields the result shown in
Figure 2. Note that this figure also contains the result
given in the previous figure to facilitate easy
comparison.

basedne
W 50 dag. optieum
7 90 dag. opliswum with censtraints o other handings

Figure 2 Effect of constraints on roll for headings not
included in objective function

As shown in the figure, the roll constraints mitigate
growth in roll at the 60° heading, and a 15° reduction in
roll is still possible at the 90° heading. The constraints
have arbitrarily chosen bounds for this example, but
they could be based on standardized criteria for
motions, if desired. This is just one example of what
can be done. To be safe, however, it would probably be
prudent to include constraints on headings that are
more closely clustered around the peak than has been
done for this example.
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Because seakeeping is a vibration problem, sensitivity
to operational conditions is not surprising. They
determine the excitation of the motion. An optimizer
could easily “tune” a design in ways that improve
performance for the conditions that are not included in
the optimization. This may be most acute for cases
with forward speed, because the frequency of
excitation shifts with changes in heading. Some
degrees of freedom may be more sensitive to this issue
than others, and more research is needed to fully
understand it.

Dealing with problems like this entails a large amount
of computational (and logistical) effort. Your paper
already provides valuable guidance in this regard, but
any additional comments or observations that you have
about practical ways to handle a full permutation of
headings, speeds, and degrees of freedom for
seakeeping optimization would be most welcome. And,
of course, it is also desirable to simultaneously include
other design metrics in the optimization process, such
as drag or construction producibility. Perhaps the
answer involves a combination of Pareto optimality for
a manageable number of objective functions based on
the most critical metrics, combined with constraints to
control behavior for other metrics that are not
contained in any other objective functions.

Once again, your paper contains many valuable
findings in a complex area. Thank you for making this
contribution to our field.
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The authors thank Dr. Hendrix for the stimulating
discussion.

Question 1

Is there a reason that you don't use a series of gradient
method optimizations to generate a Pareto front? It
seems that for smooth objective functions this would be
a more efficient method than using a global
optimization method.

Gradient-based optimization methods are extremely
accurate and fast for local, single-objective
optimization problems. As Dr. Hendrix suggests in his
question, if one needs to solve a multiobjective
problem and wants to use a gradient-based algorithm,
the different objective functions have to be aggregated
into a single merit function f*:

*(x) = % wifi(X)

where Ny is the number of objective functions and w;
are the corresponding weights of the different
objectives f;i. With this approach, one can find a single
point on the Pareto front (it should be mentioned
anyhow that it is not guaranteed that the local
minimum identified by the gradient method belongs to
the Pareto set). To identify more solutions — belonging
to the Pareto set one hopes - one therefore needs to
perform repeated gradient-based searches (i) starting
from different initial designs and (ii) with different
combination weights w; for the merit function. This is
certainly possible and it can be easily done. There are
of course also good reasons to develop true global
optimization methods for multiobjective problems. To
quote an excellent reference on multiobjective methods
(Statnikov and Matusov, 1995): “Numerous attempts to
construct a generalized criterion in the form of a
combination of particular criteria proved to be fruitless.
By cramming a multicriteria problem into the
Procrustean bed of a single-criterion one, we replace
the initial problem with a different one that has little in
common with the original problem.” We have no direct
experience with the procedure suggested in the
question. However, in our experience, multistart
gradient-based methods for single-objective problems
are much less accurate than global optimization
methods. An example is given in the following picture,
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which refers to the solution of a single optimization
problem, namely the design optimization problem for
the Ship S175. The objective function F was the RAOs
peak value for the heave motion in head seas (at 16
knots) and six design variables were used for the
solution. Geometrical constraints were imposed on the
minimum and maximum beam and on the ship
displacement, and a simple strip-theory code was used
as analysis tool for computing F. In Figure 1 the
solutions obtained with a number of different
algorithms - local and global - are presented. The
RAO's peak is reduced by using all the optimization
algorithms: among local solutions, the one obtained
with a multistart gradient method is arguably the best
one. It is, however, clear that all the global methods
tested are superior to the multistart.

Figure 1 Heave RAO in head seas at 16 knots: local
optimization procedures are able to improve the
original design, whereas global optimization
techniques are successful in finding a much better
design!

Question 2

Most of the examples you give are point designs. That
is, the objective is for a single speed or wave
frequency. Do you have any experience that would
indicate that the optimization process is better behaved
when you use an objective function that addresses a
range of conditions? My experience is that this reduces
the problems of local minima keeping a descent method
from finding a global minima.

As far as we understand, in principle there is no reason
for which an optimization process should be better
behaved when using a multipoint objective function,

addressing a range of conditions. Conversely, we
would agree on that a multipoint solution is more
robust, that is the performances of a single point design
tend to drop in off-design conditions. Indeed,
techniques for robust optimization, of the type
described in the paper, address exactly this problem.

Question 3a

You have presented one very good example of using
different optimization algorithms for the same problem
in the hull-form optimization for seakeeping section.
Here you use three different optimization algorithms to
analyze the same problem. From Tables 1 and 2 is it
not clear that they have all converged and the
intermediate results presented in Figure 9 suggest that
they may not even be converging toward the same
minima. In Table 2, FILLDIR appears to have
produced a better result than DDFPSO or DIRECT
while in Table 1, the opposite is true. Does this say
something about the initial efficiency of each of these
methods? Would it be instructive to push each of these
algorithms to convergence?

In Tables 1 and 2 we used a fixed number of objective
function evaluations to stop the algorithms: 100 (1000)
times the number of design variables, i.e., 600 (6000)
objective function evaluations, respectively. What is
clear from Table 1 is that DDFPSO and DIRECT show
close performances when one has only a reduced
number of objective function evaluations available;
indeed, they obtain nearly the same result in terms of
design variable values and objective function
reduction. FILLDIR is faster but converges to a slightly
less attractive solution (anyhow the loss in ship
performance with respect to the other two algorithms is
only about 3.5%). When more objective function
evaluations are available we got a reversed situation:
DDPFSO is the best: the solution is almost coincident
with the other two but the convergence is faster.
Anyhow it is clear that different global methods can
converge to different results; indeed, there is no
mathematical proof that, for non-convex problems, one
has reached the absolute global minimum.

Question 3b

In one case where you investigated two different
objective functions for the application to a sailing
yacht keel, you found that for the conditions
investigated that the initial gradient from your low
fidelity model (potential flow) was almost exactly
opposite to that given by your high fidelity model
(RANS). Is this because of significant separation in the
original geometry? Or was the low fidelity potential
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model ignoring lift? Or was there some other
characteristic of the flow that led to this result?

The example reported has been designed for illustrating
the qualities of the Variable Fidelity Modeling, and
was selected as a good example of the differences
between two different models. The low fidelity
potential model includes straight trailing vortices living
the fin keel at an undetermined angle (Bollay W.,
1936). In the example, however, the bulb geometry of
the yacht keel is changing, and the Laplace solver is
not able to produce accurate results in these conditions,
because the frictional resistance is brutally estimated
by considering the thin plate resistance, while the flow
details are much more complex and have a great
influence on the drag. We believe that this situation is
relatively common for flows around bodies with an
angle of attack.

Question 3c

Have you looked at the effect of different forms of
geometry modification on the optimization result? In
the HSSL SWATH example you discuss using initial
sensitivity studies to down select design variables.
Could you offer some more information on how this
was done?

We have not performed yet any study on the effect of
different shape modification strategies, but we fully
agree with Dr. Hendrix that it would be of great
interest. About the HSSL SWATH question, we may
say that in general, sensitivity studies can be useful in
determining if a design variable is really affecting the
objective function or not. The approach is based on the
computation of the partial derivative of the objective
function with respect to the variable: if it is small, this
variable could be excluded from the optimization. The
problem is that the gradient is computed around a given
solution, and the gradient component might be
completely different in a different location of the
design space. The use of surrogate models of the
objective function can overcome this difficulty, but the
effort in computing the surrogate model is not
negligible. So, a common approach is based on the
evaluation of the gradient at the original design.

Question 3d

Do you have any opinion on whether increasing the
number of design variables for different types of hull
parameterizations converge to the same result?

Different numbers of variables give different freedom
to the optimizer. In our experience (Kim et al., 2008)

any algorithm shows better results when the number of
variables increases.

Question 4

What are the sources of the differences in the 5415
optimizations presented (solver, hull discretization,
how RAOs are evaluated, other)?

The shapes reported in the paragraph "Single-Objective
Application:. DTMB Model 5415 Optimization" are
obtained with two completely different frameworks.
SDB-A uses (1) a genetic algorithm for the
optimization, (2) CFDShip-lowa as RANSE solver and
(3) a CAD-based approach for the parametrization (that
is, a CAD system is connected with the optimizer, and
it is used for the deformation of the original hull).
Conversely, SBD-B uses (1) a VFM approach, using
two different grid levels as high and low fidelity, (2)
MGShip as RANSE solver (the in-house INSEAN
RANS solver developed by Andrea Di Mascio), and (3)
the parametrization is obtained by Béziér patches
superimposition. The seakeeping solver is the same,
but it was used for the computation of constraints only.
So, all the three constitutive SBD elements are
different. Nevertheless, the two final solutions show
similar geometrical trends.

Reply to Dr. Kuhn Questions

The authors thank Dr. Kuhn for the stimulating
discussion. We think that the problem raised by the
question of Dr. Kuhn can be addressed under the
general framework of robust design optimization
(RDO) methods. RDO methods are developed to
prevent the effects of uncertainties. The effects of
considering uncertainty consist in (i) a loss in
specialization of the system and (ii) a gain in
robustness (i.e., in the expectation and/or variance of
the performances against the variation of the
probabilistic parameters). Robust design can be
formulated (as described in the paper) as an
optimization problem by considering the Bayes
principle and replacing the objective function f with a
more complex function ¢(d) which includes a
probability density function.

A possible solution is to take into account headings and
sea states by assuming their probability density p
(Figure 2) whereas motions for given speeds can be
retained as objectives. In this way one can obtain a
reduction of the number of objectives.
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p(w)

Figure 2 A sketch of the problem of with multiple
headings and sea states

The integration of the objective function is, however,
expensive. To reduce the computational burden, one
can choose a number of (sea) states and evaluate the
objective at each state, approximating the integral by
some quadrature formula. The exact Kernel of the
integral can also be replaced by an approximation
obtained by interpolating values of the Kernel at some
given state.
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